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Dichtefunktionaltheoretische Behandlung atomarer

Ionisationsprozesse in starken Feldern

Zeitabhängige Dichtefunktionaltheorie liefert eine prinzipiell exakte Beschrei-
bung eines zeitabhängigen Systems von Elektronen mittels der numerisch vorteil-
haften Einteilchen-Kohn-Sham-Gleichungen. Dieser Ansatz trifft allerdings im
Fall nichtsequentieller atomarer Ionisationsprozesse in starken Laserfeldern auf
Schwierigkeiten. Um diesen zu begegnen untersuchen wir ein eindimensionales
Helium-Modellatom in linear polarisierten Laserpulsen mit wenigen optischen
Zyklen. Die zeitabhängige Schrödinger-Gleichung wird numerisch gelöst und dient
als Referenz für eine dichtefunktionaltheoretische Behandlung des Problems. Die
Dichtefunktionale für die Ionisationswahrscheinlichkeiten und die Impulsverteilung
des Ions erweisen sich als fundamental wichtig. Wir führen Näherungen der ex-
akten Funktionale ein, die die charakteristische “Kniestruktur” in der Doppelioni-
sationsationswahrscheinlichkeit reproduzieren. Es werden wesentliche Fortschritte
bei der Entwicklung eines korrelierten Funktionals für die Impulsverteilung des
Ions erzielt. Mit Hilfe der Lösung der zeitabhängigen Schrödinger-Gleichung ent-
decken wir nichtsequentielle Doppelrekombination: Zwei Elektronen kehren zum
Ion zurück und senden, bedingt durch ihre Wechselwirkung, ein einziges Photon
aus. Dieser Effekt wird auch mit zeitabhängiger Dichtefunktionaltheorie untersucht
und liefert eine wertvolle Referenz für genaue Austausch-Korrelations-Potentiale.

Density Functional Treatment of Atomic

Strong-Field Ionization Processes

Time-dependent density functional theory can in principle describe a time-
dependent electronic system exactly via the computationally advantageous Kohn-
Sham scheme of one-electron equations. However, in the case of non-sequential ion-
ization of atoms in strong laser fields this approach was found to face fundamental
challenges. To address these we investigate a one-dimensional model Helium atom
in linearly polarized few-cycle laser pulses. The time-dependent Schrödinger equa-
tion is solved numerically and serves as a reference for a time-dependent density
functional treatment. The functional of the density for the ionization probabilities
and the momentum distribution of the ion is found to be of central importance.
We introduce approximations of the exact functionals which reproduce the charac-
teristic “knee structure” in the double ionization probability. Significant progress
towards a correlated functional for the momentum distribution of the ion is made.
With the solution of the Schrödinger equation non-sequential double recombina-
tion is discovered: Two electrons return to the ion and, through interaction, emit
a single photon upon recombination. This effect is also investigated using time-
dependent density functional theory serving as a sensitive benchmark for accurate
exchange-correlation potentials.
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Chapter 1

Introduction

The last twenty years have seen a rapid progress in laser technology. Intensities in
the focus of the laser of up to I = 1022 W/cm2 can be reached and laser fields of the
strength of I = 1017 W/cm2 are produced routinely with table-top laser equipment.
The range of wavelengths for which these intensities are achieved has expanded to
λ = 248nm-1µm (see Ref. [1] and references therein).

Furthermore, it has been possible to produce laser pulses of merely a few optical
cycles [1], i.e., of femtosecond durations. Control over the temporal evolution of
the electric field has been gained, allowing laser pulses to be described by a carrier
wave and an envelope function. The phase between the envelope and the carrier
wave can be measured and controlled [2,3]. With few-cycle driving pulses, it is now
also possible to generate short attosecond ultraviolet pulses [4, 5].

The electric field of the nucleus in an atom corresponds to intensities of just
1016 W/cm2. With strong few-cycle laser pulses it is therefore possible to initiate
(and to a certain extent control) various electronic processes.

A complementary development has been the advent of cold target recoil ion
momentum spectroscopy [6] which allows to measure the momenta of the reaction
products in laser-matter interactions, greatly enhancing the understanding of the
underlying processes.

Among the vast range of phenomena resulting from the interaction of laser
pulses and atoms (see Refs. [1, 5, 7, 8] for an introduction) we will study non-
sequential double ionization and high-order harmonic generation in Helium in this
work.

In measurements of the ionization yields of noble gas atoms interacting with
intense laser fields, an enhanced production of doubly charged ions was observed.
As a function of the intensity of the laser pulse, this process manifests itself in a
“knee structure” of the double ionization yield [9,10] as depicted in the left part of
Fig. 1.1. For intensities I < 3×1015 W/cm2 the He2+

signal is orders of magnitudes
higher than expected from a sequential mechanism where the electrons leave the
atom one after another. Hence, strong interaction between the electrons has to be
responsible for non-sequential double ionization (NSDI).
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Figure 1.1: The left figure shows the ionization yield of Helium after in-
teraction with a laser pulse (taken from Ref. [10]). The distribution of the
momentum of He2+ ions (from Ref. [11]) is depicted on the right.

The momentum distribution of the He2+
ions shows distinct maxima at non-

zero momenta [11] (right hand side of Fig. 1.1). Due to momentum conservation
this is a clear indication that the rescattering of an electron with its parent ion
collisionally frees (or excites) the second electron. The contribution of different
double ionization processes to characteristic ion momentum distributions in noble
gas atoms has been studied [12]. For few-cycle laser pulses an asymmetry depending
on the carrier-envelope phase was measured [13].

In addition to ionization, it is also observed that atoms subjected to laser pulses
emit coherent radiation (for reviews see Refs. [5,14]). The frequency consists of odd
multiples of the laser frequency. The efficiency of high-order harmonic generation
(HOHG) is constant over many harmonic orders. This leads to a plateau in the
frequency spectrum up to a cutoff-energy [15].

Describing the phenomena of laser-atom interactions theoretically, a wide range
of approaches has been used. Due to the high intensities of the laser fields pertu-
bative methods are not applicable.

In the nonrelativistic regime, the natural starting point is the time-dependent
Schrödinger equation (TDSE). However, analytical solutions for the interaction
with an intense laser field do not exist. Numerical implementations face the problem
that the computational time scales exponentially with the number of electrons N ,
the well-known “exponential wall” [16]. Solution of the Schrödinger equation in full
dimensionality is therefore limited to two active electrons (see Ref. [17] for double
ionization of Helium). Due to this fundamental limitation the prospects to expand
its application to systems with more electrons do not seem promising.

A semi-analytical approach is the strong field approximation [18–20] with the
inclusion of rescattering. This theory has been successful in addressing both the
probability as well as the mechanism of non-sequential ionization (see, e.g., Refs.
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[21, 22] and references therein). Apart from inherent challenges such as the choice
of the gauge, the strong-field approximation becomes analytically unduly involved
with more than two electrons in the continuum.

While purely classical methods [23, 24] have also succeeded in analyzing non-
sequential ionization, the limited nature of these models is evident as all quantum-
mechanical effects have to be included “by hand”.

Methods based on first principles are R-Matrix Floquet theory [25] and multi-
configurational time-dependent Hartree-Fock [26]. Neither the first [27] nor the
latter [28, 29] have, however, reproduced the NSDI “knee structure” to date. In
addition, they are of limited appeal for the description of large systems. R-Matrix
Floquet theory becomes as computationally demanding as the time-dependent
Schrödinger equation with multiple free electrons. Multi-configurational time-
dependent Hartree-Fock suffers from the non-local exchange potential which re-
quires the calculation of large numbers of overlap integrals each time-step.

Time-dependent density functional theory (TDDFT) [30] in contrast offers the
possibility to treat the strong-field dynamics of atomic (and molecular) systems
from first principles in a numerically tractable way. It assures that in principle
all observables can be calculated exactly from the solution of N one-electron time-
dependent Kohn-Sham equations (TDKSE) with effective potentials. This means
that in sharp contrast to the time-dependent Schrödinger equation, computational
time increases almost linearly with N , offering the possibility to investigate also
very complex systems.

Excitation energies and response properties in quantum chemistry (see
overviews in Refs. [31–33]) have been calculated successfully using time-dependent
density functional theory. In the domain of laser-atom interactions, high-order
harmonic spectra were studied using TDDFT [34,35].

An attempt to calculate photoionization energy spectra from time-dependent
density functional theory was not successful though [36]. Previous investigations
failed to reproduce the characteristic “knee structure” of the double ionization
probability [37–40]. Indeed, this is seen as one of the most dramatic failures of
time-dependent density functional theory [41].

In this work we investigate this failure and discuss possible solutions. In Chap-
ter 2 we review the fundamental considerations which allow us to describe an atom
in a laser field using time-dependent density functional theory. A model Helium
atom and its theoretical description are introduced (Chapter 3). As a reference,
the time-dependent Schrödinger equation is solved for this atom and compared
to approaches using time-dependent density functional theory. The problem of
double ionization probabilities is addressed in Chapter 4, where we introduce two
functionals which reproduce a “knee structure” in the double ionization probabil-
ity. In the following Chapter 5 we analyze the momentum distributions after the
ionization process and propose a route towards obtaining ion momentum distri-
butions in time-dependent density functional theory. We report the discovery of
non-sequential double recombination in high-order harmonic spectra (Chapter 6)
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and discuss challenges in treating it in density-functional theory. Details of the
numerical implementation can be found in Appendix A.

Atomic units are used throughout this work, i.e., we set h̄ = me = |e| = 4π ε0 =
1 (cf. Ref. [42] for an introduction) unless otherwise noted.



Chapter 2

Time-Dependent Density

Functional Theory

We present the foundations of time-dependent density functional theory which are
necessary to describe the system of interest in this work, an atom in a strong
laser field. The Runge-Gross theorem is proven, which establishes a one-to-one
mapping between the density and the potential of a system of electrons, thereby
assuring that all observables can be expressed as functionals of the density (Sec. 2.1).
For a numerical implementation the non-interacting time-dependent Kohn-Sham
equations are essential which in principle yield the exact density of the respective
system (Sec. 2.2).

An introduction to groundstate density functional theory and other important
concepts in time-dependent density functional theory which are not of direct rel-
evance to this work are found elsewhere (for excellent overviews see Refs. [31–33]
and references therein). Among the latter are time-dependent spin density func-
tional theory, linear response theory, the calculation of excitation energies as well
as the adiabatic local density and time-dependent optimized effective potential ap-
proximations of the exchange-correlation potential.

2.1 The Runge-Gross Theorem

We investigate a system of N electrons in time-dependent external single-electron
potentials V (r, t) which are spin-independent. The electrons are assumed to be non-
relativistic and to interact through the Coulomb repulsion W (|r−r′|). Surpressing
spin-indices, the wavefunction of the system is then ψ(r1, . . . , r2, t). An initial state
at t0 is assumed to be given by ψ0 = ψ(r1, . . . , r2, t0). In this Chapter quantities
taken at t = t0 are subscripted by zero.

Let V (r, t) 6= V ′(r, t) + C(t) be two external potentials which can be ex-
panded into a Taylor series around t0 and which differ by more than a purely

5
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time-dependent function. Then there exists an integer k for which

∂k
t

[
V (r, t) − V ′(r, t)

]∣∣
t=t0

6= const . (2.1)

We first consider the current

j(r, t) = 〈ψ(r1, . . . , r2, t) | ĵ(r) |ψ(r1, . . . , r2, t) 〉 (2.2)

with the usual current density operator given by ĵ(r) =
1
2 i

∑N
i=1 [∇i δ(r − ri) + δ(r − ri)∇i]. The current density operator does not

depend explicitly on the time. Hence, the equation of motion for the difference of
the current densities produced by the two potentials is

∂t
[
j(r, t) − j′(r, t)

]∣∣
t=t0

= i 〈ψ0| [H0(r) −H ′
0(r), ĵ(r)] |ψ0 〉

= n0(r)∇
[
V0(r) − V ′

0(r)
]
. (2.3)

This result is a consequence of the Hamiltonians H0 and H ′
0 of the two systems

being identical except for the external potentials V and V ′. Making use of the
equation of motion k-times yields

∂k+1
t

[
j(r, t) − j′(r, t)

]∣∣
t=t0

= n0(r)∇ ∂k
t

[
V (r, t) − V ′(r, t)

]∣∣
t=t0

6= 0 , (2.4)

where we have assumed that the spatial derivatives of the potentials exist which
are necessary to evaluate the commutators. The last result follows from Eq. (2.1)
if the initial density n0(x) does not vanish in exactly those regions where the left
hand expression in Eq. (2.1) is not constant. This means that the density currents
for the external potentials V and V ′ will start to be different infinitesimally after
t0. In order to relate this result to the densities we use the continuity equation for
the difference of the densities

∂t

[
n(r, t) − n′(r, t)

]∣∣
t=t0

= −∇ ·
[
j(r, t) − j′(r, t)

]
. (2.5)

Calculating the (k+ 1)th time derivate of Eq. (2.5) and making use of Eq. (2.4) we
obtain

∂k+2
t

[
n(r, t) − n′(r, t)

]∣∣
t=t0

= −∇ · [n0(r)∇uk(r)] , (2.6)

where uk(r) = ∂k
t [V (r, t) − V ′(r, t)]|t=t0

. If we assume that the right hand side
vanishes, i.e., that ∇ · [n0(r)∇uk(r)] = 0 holds, then

0 =

∫
d3r uk(r)∇ · [n0(r)∇uk(r)]

=

∮
df · uk(r)n0(r)∇uk(r) −

∫
d3r n0(r) (∇uk(r))2 . (2.7)

Green’s first theorem was used to obtain the surface integral which will vanish for
initial densities and uk falling off fast enough. Then the second integral on the right
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has to be zero. As n0 ≥ 0, this is a contradiction to Eq. (2.4), where we concluded
that n0∇uk 6= 0. We have thus shown that the right hand side of Eq. (2.6) will
not vanish in all relevant cases occuring in atomic physics. The densities of the
two potentials will be different infinitesimally later than t0, and we can state the
Runge-Gross theorem [30]:

An initial state ψ(r1, . . . , r2, t0) of an N -electron system in the external
single-electron potentials V (r, t) and V ′(r, t), which differ by more than
a purely time-dependent function and are Taylor expandable around
t = t0, evolves into densities n(r, t) and n′(r, t) which will be different
for all times t > t0.

Solution of the time-dependent Schrödinger equations with different external
potentials V (r, t) but a fixed initial state ψ0 establishes a map V (r, t) → n(r, t) via
the wavefunction ψ. The Runge-Gross theorem then establishes the invertibility of
this map n(r, t) → V (r, t). Hence, a one-to-one mapping exists between the single-
electron potential and the density of the system for a given initial state. The density
can then be seen as determining the potential (up to a time-dependent function)
which in turn determines the wavefunction (up to a time-dependent phase factor).

For our purposes the initial state will be the non-degenerate groundstate of
the system. We then know from groundstate density functional theory that the
groundstate density determines the groundstate wavefunction, i.e., the initial state
ψ0[n0] [43]. We can therefore write the time-dependent wavefunction as a functional
of the density alone ψ[n]. Hence, all observables are determined by the density alone
as O[n] = 〈ψ[n] | Ô|ψ[n] 〉, the phasefactor of the wavefunction canceling.

2.2 Time-Dependent Kohn-Sham Equations

We regard a (fictitious) system of N non-interacting electrons which has the same
density as the interacting system. The electrons are moving in an effective Kohn-
Sham potential vKS which implicitly includes the interactions with the other elec-
trons. This allows us to formulate a time-dependent nonlinear Schrödinger equation
for each electron

i ∂t φi(r, t) =

(
−1

2
∆ + vKS[n](r, t)

)
φi(r, t) , (2.8)

under the constraint that the Kohn-Sham orbitals φi(r, t) reproduce the exact
density of the physical system

n(r, t) =
N∑

i=1

|φi(r, t)|2 . (2.9)

The proof of the Runge-Gross theorem in Sec. 2.1 can now be repeated for this
system, the wavefunction being given by the Slater determinant of the orbitals.
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This establishes a one-to-one mapping between the density and the Kohn-Sham
potential n(r, t) ↔ vKS[n](r, t). Thus the Runge-Gross theorem states that if vKS

exists, it is uniquely determined by the density n which in turn is by construction
equal to the true density of the system. We have again assumed the system to be
initially in its groundstate and appealed to groundstate density functional theory.
Therefore we write the Kohn-Sham potential as a functional of the density.

It can be shown that if the Hamiltonian of the interacting system is stationary
for t < t0 an initial non-interacting state with the exact density and the exact time-
derivative of the density can be constructed. This in turn assures the existence of
the time-dependent Kohn-Sham potential vKS [44]. For the model Helium atom
studied in this work, the existence of vKS can be shown explicitly by inversion of
the Kohn-Sham equation [45].

From the construction it is clear that one has to be careful to identify the
electrons in the physical system (as described by the time-dependent Schrödinger
equation) with the ficticous, non-interacting “electrons” of the Kohn-Sham equa-
tions. As illustrated by the results in Chapters 4 and 5 the Slater determinant
of the Kohn-Sham orbitals does not represent the correlated wavefunction ψ if
electron-electron interactions are strong.

For actual calculations we define an exchange-correlation potential by writing

vxc[n](r, t) = vKS[n](r, t) − V (r, t) − vh[n](r, t) , (2.10)

with the external single-electron potential V from the physical system and the
Hartree potential

vh[n](r, t) =

∫
d3r′n(r′, t)W (|r − r′|) , (2.11)

where W (|r − r′|) is the electron-electron interaction potential. Equations (2.8)-
(2.11) show the great computational advantage of the Kohn-Sham scheme as it
requires only the solution of N single-electron equations (in contrast to the time-
dependent Schrödinger equation) the potentials of which are local, i.e., multiplica-
tive (in contrast to the time-dependent Hartree-Fock equations).

Being able to derive the Kohn-Sham equations from a stationary action prin-
ciple δA/δn = 0 would give additional justification to the time-dependent Kohn-
Sham scheme. The standard quantum mechanical action has a stationary point at
the solution of the time-dependent Schrödinger equation for a given initial wave-
function ψ0. A straightforward choice is to extend this action as [30] A[n,ψ0] =∫ t1
t0

dt〈ψ[n,ψ0](t)| i ∂t − Ĥ(t)|ψ[n,ψ0](t) 〉. The wavefunction ψ is written as a
functional of the density and the initial state due to the Runge-Gross theorem
(cf. Sec. 2.1). However, this definition leads to several paradoxes [31,41,44,46,47].
It is nevertheless possible to define a functional, the Keldysh action AK, from
which the Kohn-Sham equations can be derived and which leads to the relation
vxc(r, t) = δAK

xc/ δn(r, τ)|n=n(r,t), with τ a pseudotime parameterizing the real
time t [44, 46]. In contrast to groundstate density functional theory though this
relation does not offer a straightforward way to find approximations of vxc.
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We thus know that the time-dependent Kohn-Sham scheme can in principle
reproduce the exact density. From Sec. 2.1 we also know that all observables can
in principle be expressed as functionals of the density of the system alone. The
practical challenge is therefore twofold. One has to approximate vxc in order to gain
densities as close as possible to the physical density. In addition, if an expression for
the observable as a functional of the density is not known, one has to approximate
the functional as well.





Chapter 3

Model System

Our goal is to improve the description of atomic ionization processes using time-
dependent density functional theory. Therefore, we investigate the ionization pro-
cess of Helium exposed to a linearly polarized laser field in order to be able to
compare time-dependent density functional calculations to the exact solution of
the time-dependent Schrödinger equation. We introduce the different laser pulses
used in this work (Sec. 3.1). The linear polarization and the dipole approximation
allow us to make use of a one-dimensional model Helium atom (Sec. 3.2). The time-
evolution of the system can then be described by the time-dependent Schrödinger
equation (Sec. 3.3) or by time-dependent density functional theory (Sec. 3.4). From
the Schrödinger equation one can construct an exact Kohn-Sham orbital (EKSO)
as a reference for Kohn-Sham orbitals (Sec. 3.5). To describe sequential ionization
the corresponding He

+
model (Sec. 3.6) and the single active electron approach

(Sec. 3.7) are introduced.
The implementation of the equations presented in this Chapter on a numerical

grid is described in detail in Appendix A.

3.1 Laser Pulses

In order to keep computational times manageable when solving the time-dependent
Schrödinger equation for the model Helium atom (cf. Appendix A) we use linearly
polarized few-cycle laser pulses with N cycles and a sin2-pulse envelope. The length
of a pulse with frequency ω is then T =2Nπ/ω and the vector potential

A(t) = Â ex sin2
(
ω

2N
t

)
sin (ω t) (3.1)

for 0 ≤ t ≤ T and zero otherwise. We use the dipole approximation, i.e., the spatial
dependence of the laser field is neglected. This is reasonable as the wavelengths λ
of the laser pulses we study are large compared to the (classical) excursion length
of the electrons. Since A(r, t) = A(t) and thus B(r, t) = ∇× A(t) = 0, magnetic
effects are neglected in the dipole approximation. This assumption will only be

11
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Figure 3.1: Vector potential as a function of time for three of the laser pulses
used in this work.

valid as long as v/c � 1, which is however fulfilled for the intensities used in this
work. Classically, the Lorentz force is then FL(r, t) = −E(r, t). This shows that
for electrons with vanishing initial lateral momentum the motion is restricted to
the polarization direction of the laser field as E(r, t) = E(t) = −∂t A(t).

We make use of five different laser pulses which are characterized in Tab. 3.1.
Three pulses with λ = 614nm and λ = 780nm are also depicted in Fig. 3.1 as a
function of time. As the effects we investigate depend strongly on the intensity I =
I(Â), we perform calculations for different values of Â for each of the laser pulses.
From Fig. 3.1 we see that for few-cycle laser pulses the effective peak amplitude
Âeff may not be equal to Â. In this work we will always use Âeff to determine
intensities.

Table 3.1: Parameters of the five different laser pulses, the Chapters were
results obtained with the respective laser pulse are presented and the corre-
sponding laser system.

λ (nm) ω (a.u.) N Chapter Laser

248 nm 0.18373 3 4 KrF
614 nm 0.07421 3 4 Dye
780 nm 0.05842 3 4, 5 Ti:Sa
780 nm 0.05842 4 4 Ti:Sa
780 nm 0.05842 6 6 Ti:Sa
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3.2 Model Helium Atom

As explained in the previous Sec. 3.1 we use the dipole approximation for the lin-
early polarized laser pulses interacting with the Helium atom. The dynamics after
ionization are dominated by the laser pulse and thus oriented along the laser po-
larization direction. Therefore it is reasonable to describe the interaction with
the laser pulses by a one-dimensional model Helium atom with the spatial dimen-
sion along the polarization direction. The electron-electron and electron-nucleus
Coulomb interactions V ∝ 1/

√
x2 will thus lead to singularities in the Hamiltonian

for x → 0. This means the electrons cannot pass by each other or by the nucleus.
To avert this unphysical behavior we use soft-core potentials V ∝ 1/

√
x2 + ε for

the Coulomb interactions. It is known that all essential features of the ionization
process are described well by this model [37,38,45,48–50].

The electrons occupy a spin-singlet state in the groundstate of Helium and the
laser pulse in dipole approximation leads to B(t) = 0, so that the electrons will
stay in this state for all times 0 ≤ t ≤ T . Thus, it is sufficient to study the spatial
wavefunction which has to be symmetric under exchange of the electrons.

3.3 Time-Dependent Schrödinger Equation

For the model Helium atom the Hamiltonian in velocity gauge of the
one-dimensional time-dependent Schrödinger equation ∂t ψ(x1, x2, t) =
Ĥ(x1, x2, t)ψ(x1, x2, t) thus is

Ĥ =
∑

i=1,2

( 1

2

[
− i ∂xi

+A(t)
]2

+ V (x)
)

+W (|x1 − x2|) , (3.2)

with Ĥ = Ĥ(x1, x2, t). The electron-nucleus interaction potential

V (x) = − 2√
x2 + εen

(3.3)

and the electron-electron interaction potential

W (x) =
1√

x2 + εee
(3.4)

are used. A gauge-transformation with Λ(t) =
∫ t dt′ [A(t′)]2 / 2 intoduces a scalar

potential which cancels the A2 term and adds a purely time-dependent phase-factor
to the wavefunction ψ(x1, x2, t) → ei Λ(t) ψ(x1, x2, t). The resulting Hamiltonian
used in actual calculations thus is

Ĥ(x1, x2, t) =
∑

i=1,2

(
− 1

2
∂2

xi
+ V (xi, t)

)
+W (|x1 − x2|) , (3.5)
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Figure 3.2: Sum of the Coulomb potentials of the electron-nucleus and
electron-electron interactions in the two-electron space.

with the external potential

V (x, t) = −iA(t)∂x + V (x) . (3.6)

The soft-core parameters of the electron-nucleus (εen) and electron-electron (εee)
interactions are chosen to yield the correct ionization potentials. Reproducing the
ionization potential of He+, I(2)

p = 2.0 fixes εen = 0.5 (cf. Sec. 3.6). The groundstate
energy of the model Helium atom is obtained using imaginary time-propagation
(Sec. A.7). The choice εee = 0.329 yields the ionization potential of Helium I(1)

p =
−E0 = −0.904. In this way we assure consistency with the full-dimensional Helium
atom. All results presented in this work are qualitatively insensitive to the exact
values of the soft-core parameters.

Figure 3.2 shows the unperturbed potential of the model atom which consists
of the sum of the attractive electron-nucleus interactions V (xi) and the repulsive
electron-electron interaction W (|x1 − x2|).

3.4 TDDFT Approach

The two electrons constitute a spin-singlet state for all times (cf. discussion in
Sec. 3.2). They can thus be described by the same Kohn-Sham orbital. Therefore
we have only one Kohn-Sham equation i∂t φ(x, t) = ĤKS(x, t)φ(x, t) (cf. Eq. 2.8)
with the Hamiltonian

ĤKS(x, t) = −1

2
∂2

x + V (x, t) + vhx(x, t) + vc(x, t) . (3.7)
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The external potential V is given by Eq. (3.6). The Hartree-exchange potential
vhx(x, t) = vh(x, t) + vx(x, t) follows as

vhx(x, t) =
1

2

∫
dx′

n(x′, t)√
(x− x′)2 + εKS

ee

, (3.8)

where we have used the exact exchange term for Helium vx(x, t) = −vh(x, t)/ 2
which is local as both electrons are described by the same orbital. The unknown
correlation potential vc is in principle determined via the Runge-Gross theorem
(Sec. 2.1) by the time-dependent density and the groundstate wavefunction. The
model Helium atom is in its groundstate at t0 = 0 and from static density functional
theory we know that the groundstate wavefunction can then be expressed as a
functional of the density [43]. Therefore, vc can be expressed as a functional of the
density alone vc(x, t) = vc[n](x, t), with the density of the system (2.9) given by

n(x, t) = 2 |φ(x, t)|2 . (3.9)

However, the functional dependence is not known and it is therefore necessary to
approximate vc.

From Eq. (3.7) we see that in the special case of the Helium atom (due to the
locality of vx) the time-dependent Hartree-Fock (TDHF) treatment of the problem
yields an identical description as a time-dependent density functional approach
with the correlation potential set to zero. In this work we will therefore refer to
the approximation vc = 0 as “TDHF”.

Studying ionization processes using the exact time-dependent Schrödinger so-
lution of a one-dimensional model Helium atom it was found that the correlation
potential changes discontinuously when the number of bound electrons

N(t) =

∫ +a

−a
dxn(x, t) , (3.10)

passes an integer [45]. This feature is well-known from groundstate density func-
tional theory using fractional occupation numbers [51] and in the time-dependent
case carries over to vxc in more complex atoms [52]. The parameter a = 6a.u. is
chosen to encompass the bound states (cf. Sec. 4.1). A model potential taking this
behavior into account is the LK05 potential [45]

vLK05
c (x, t) =

[
N0/N(t)

1 + exp[C(N0/N(t) − 2)]
− 1

]
vhx(x, t) . (3.11)

C is an arbitrary but large constant (we choose C = 50). We have N0 = N(t0) = 2
in the model Helium atom, as t0 = 0 is the time when the system is in its ground-
state before interaction with the laser pulse. With decreasing N(t) the correlation
potential compensates the decreasing value of vhx(x, t) so that the ionization poten-
tial is held (approximately) constant. When the first electron is removed (N(t) < 1)
from the atom vLK05

hxc (x, t) → 0, i.e., a hydrogen-like ion is left.
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The same behavior is modeled by the BW05 potential

vBW05
c (x, t) = vhx(x, t0)Θ(N(t) − 1) − vhx(x, t) . (3.12)

The groundstate Hartree-exchange potential describes the electron-electron in-
teraction until the first electron is removed, leaving a one-electron system with
vBW05
hxc (x, t) = 0.

From Eqs. (3.11) and (3.12) we have vc(x, t0)=0, i.e., the groundstate is iden-
tical for the TDHF, LK05 and BW05 approximations of vc. Via the ionization
potential of He+, εen = 0.5 is already fixed (cf. Sec. 3.6). As described for the
time-dependent Schrödinger equation in Sec. 3.3, we choose εKS

en = 0.343 to acquire
I(1)
p = 0.904 for the model Helium atom.

3.5 The exact Kohn-Sham orbital

Along the lines of Ref. [45] we will construct from the solution of the time-
dependent Schrödinger equation an exact Kohn-Sham orbital (EKSO). The
Schrödinger solution gives the exact density of our model Helium atom

n(x, t) = 2

∫
dx2 |ψ(x, x2, t)|2 = 2

∫
dx1 |ψ(x1, x, t)|2 . (3.13)

A time-dependent density functional calculation with the exact correlation poten-
tial vc would, via the time-dependent Kohn-Sham scheme, give the same density

n(x, t) = 2 |φ(x, t)|2 . (3.14)

Similarly, the Schrödinger solution yields the exact probability current of the
system j(x, t) = −i (∂x−∂x′) γ(x, x′, t)|x=x′/ 2 with the one-electron reduced density
matrix γ(x, x′, t) = 2

∫
dx2 ψ

∗(x′, x2, t)ψ(x, x2, t) as

j(x, t) = 2 Im

∫
dx2 ψ

∗(x, x2, t) ∂x ψ(x, x2, t)

= 2 Im

∫
dx1 ψ

∗(x1, x, t) ∂x ψ(x1, x, t) . (3.15)

The second expression follows from the symmetry of ψ(x1, x2, t) in the electron
coordinates by integrating out x1 in the expression for γ(x, x′, t). The current of
the Kohn-Sham system is

j(x, t) = 2 Imφ∗(x, t)∂x φ(x, t) . (3.16)

For a one-dimensional system the exact current and the Kohn-Sham current are
equal, since from the continuity equation −∂x j(x, t) = ∂t n(x, t) we have j(x, t) =
−
∫ x
−∞ dx′ ∂t n(x′, t) which determines the current uniquely if the current vanishes

at infinity [41]. As we know that the densities of the exact and the Kohn-Sham
systems are equal the currents have to be equal too.
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The Kohn-Sham orbital φ(x, t) = |φ(x, t)| ei ϑ(x,t) can now be determined.
Equating Eqs. (3.13) and (3.14) as well as Eqs. (3.15) and (3.16), we have for each
point in space and time two equations for the absolute value and the phase of the
orbital

|φ(x, t)| =
√
n(x, t)/ 2 ,

ϑ(x, t) =

∫ x

−∞
dx′

j(x′, t)

n(x′, t)
+ α(t) . (3.17)

The unknown purely time-dependent phase factor α(t) does not affect the results
presented in this work and is therefore set to zero.

With Eqs. (3.17) we can thus construct the Kohn-Sham orbital which a time-
dependent Kohn-Sham equation with the exact vc would yield from the solution
of the time-dependent Schrödinger equation. This exact Kohn-Sham orbital allows
to separate the tasks of finding a suitable approximation of vc (where it serves as
a reference for the resulting orbital) and appropriate functionals for observables
(where it is the exact input).

3.6 Model He
+

Ion

In Sec. 3.3 we discussed the time-dependent Schrödinger equation of the model He-
lium atom. The Hamiltonian in velocity gauge of the time-dependent Schrödinger

equation of the corresponding model He
+

ion i ∂t ψ
He

+

(x, t) = ĤHe
+

(x, t)ψHe
+

(x, t)
is deduced as

ĤHe
+

(x, t) = −1

2
∂2

x + V (x, t) , (3.18)

with the external potential V (x, t) (3.6). The A2 term has been transformed away
(cf. Sec. 3.3).

Using imaginary time-propagation to determine the groundstate of He+

(Sec. A.7), we choose the soft-core parameter of the electron-nucleus interaction
εen = 0.5 to yield the ionization potential Ip = 2.0 of He+, which is identical to
I(2)
p of He. To guarantee consistency in the ionization process, εen = 0.5 is used in

the time-dependent Schrödinger equation for the model Helium atom and in the
Kohn-Sham equations (as the Kohn-Sham equation for He

+
is identical to Eq. 3.18).

3.7 Single-Active Electron Approach

In the single-active electron approach one electron is treated as being bound for
all times while the other electron interacts with the laser field. Therefore the two
electrons are described by different wavefunctions. Hence, the total wavefunction of
the atom is not symmetric under electron exchange if it is written as a product of the
single-electron wavefunctions, i.e., the electrons are assumed to be distinguishable.
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The time-dependent Schrödinger equation for the active (first) electron then is
i ∂t φ

SAE
(1) (x, t) = ĤSAE

(1) (x, t)φSAE
(1) (x, t) with the Hamiltonian

ĤSAE
(1) (x, t) = −1

2
∂2

x + V (x, t) + vhx(x, t0) . (3.19)

The external potential V (x, t) is given by Eq. (3.6) and the groundstate Hartree-
exchange potential vhx(x, t0) (3.8) is used. The second electron is described by the
wavefunction φSAE

(2) (x, t) = φSAE
(1) (x, t0), i.e., it stays in the groundstate for all times.



Chapter 4

Ionization Probabilities

In the first Sec. 4.1 of this chapter we will explain how single and double ioniza-
tion probabilities are calculated in the model Helium atom. The results of the
solution of the time-dependent Schrödinger equation for different laser pulses are
presented (Sec. 4.2), reproducing the “knee structure” typical of non-sequential
double ionization. We then turn to the calculation of ionization probabilities from
time-dependent density functional calculations. The deficiencies of uncorrelated
ionization probability functionals are shown (Sec. 4.3.1). We make use of them to
evaluate the quality of approximations of the correlation potential in Sec. 4.3.2.
Functionals including correlation are constructed (Sec. 4.3.3) and the resulting cor-
relation integral is examined for exact inputs (Sec. 4.3.4). The results underline the
importance of the number of bound electrons. General considerations regarding
the approximation of the correlation integral are made in Sec. 4.3.5. The Becke ap-
proximation from groundstate density functional theory is found to be insufficient
to improve the results of the uncorrelated functionals (Sec. 4.3.6). We introduce
the adiabatic (Sec. 4.3.7) and the fit function approximations (Sec. 4.3.8), which are
able to reproduce the “knee structure” in the double ionization probability.

4.1 Calculation of Ionization Probabilities

Given the groundstate wavefunction of our model Helium atom
ψ0 = ψ(x1, x2, t0) and the wavefunction ψ(t) = ψ(x1, x2, t) during or after
the interaction with the laser field our goal is to calculate the ionization
probability.

The integral over the probability density not bound to the atom is the proba-
bility for ionization. With Ĥ0 the Hamiltonian of the unperturbed model Helium
atom with bound eigenstates ψn, n = 0, 1, . . . we define the projection operator
P̂0 =

∑
n |ψn 〉 〈ψn|. Thus, projecting out the bound states yields the “part” of the

wavefunction ψ associated with ionization |ψi(t) 〉 = |ψ(t) 〉 − P̂0 |ψ(t) 〉. Hence,
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He
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Figure 4.1: Schematic illustration of the areasA used for calculating ionization
probabilities of the model Helium atom. Note that a = 6 a.u. and the size of
the grid |xi| ≤ 300−1300 a.u., i ∈ {1, 2} (for details cf. Sec. A.9) are not drawn
to scale.

the ionization probability is given as

P (t) = 〈ψi(t)|ψi(t) 〉 . (4.1)

This approach however has the disadvantage that one needs to know all bound
states of our model atom. Calculating them numerically involves considerable effort
(even the groundstate is not known analytically, cf. Sec.A.7). In addition, Eq. (4.1)
alone does not yield information about single and double ionization probabilities,
only of their sum P .

Therefore, we calculate ionization probabilities by partitioning the two-electron
space . We interpret single ionization as the situation when only one electron is
farther than a distance a away from the Helium nucleus (situated at the origin).
Then, the atom is doubly ionized if both electrons are further than a away from
the origin. Accordingly, when both electrons are in the vicinity of the nucleus the
atom is not ionized. Since the absolute square of the wavefunction at a point in
the Hilbert space gives the probability to find the two electrons at the respective
coordinates, we define the areas

A (He) = {(x1, x2) | |x1| ≤ a, |x2| ≤ a} ,
A (He

+
) = {(x1, x2) | |xi| > a, |xj 6=i| ≤ a ∀ i, j ∈ {1, 2}} ,

A (He2+
) = {(x1, x2) | |x1| > a, |x2| > a} . (4.2)

Integrating the probability density, i.e., the absolute square of the wavefunc-
tion ψ(x1, x2, t) over the areas A (which are indicated in Fig. 4.1) then yields the
respective ionization probabilities

P 0(t) =

∫∫

A (He)
dx1 dx2 |ψ(x1, x2, t)|2 ,
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P
+
(t) =

∫∫

A (He
+

)
dx1 dx2 |ψ(x1, x2, t)|2 ,

P 2+
(t) =

∫∫

A (He2
+

)
dx1 dx2 |ψ(x1, x2, t)|2 . (4.3)

In order to encompass all bound states the parameter a is chosen as a = 6a.u.
throughout this work, results being insensitive to the exact value of a. This scheme
to determine ionization probabilities has been successfully used in numerous similar
calculations [37, 38, 49]. The integrations in Eqs. (4.3) are approximated by a Rie-
mann sum. We replace infinite integral limits by the boundaries of the numerical
grid, which is chosen large enough to minimize norm loss (cf. Secs. A.8 and A.9).

In the special case of an uncorrelated two-electron atom, i.e., Ĥ(x1, x2, t) =
ĥ(1)(x1, t) + ĥ(2)(x2, t) with identical Hamiltonians for the two electrons ĥ(1) =
ĥ(2), the wavefunction can be written as a product of two identical one-electron
wavefunctions ψ(x1, x2, t) = φ(x1, t)φ(x2, t). Inserting this into Eqs. (4.3) and using
that

∫
dx |φ(x, t)|2 = 1 the ionization probabilities simplify to

P 0(t) = [p(t)]2 ,

P
+
(t) = 2 p(t) [1 − p(t)] ,

P 2+
(t) = [1 − p(t)]2 ,

p(t) =

∫ +a

−a
dx |φ(x, t)|2 . (4.4)

In this case, the ionization probabilities can be calculated simply from the single-
electron wavefunction φ(x, t) in the vicinity of the Helium nucleus |x| ≤ a, i.e., from
the probabilities for the respective electron to be free (1− p) and to be bound (p).

4.2 Ionization Probabilities from the TDSE

The time-dependent Schrödinger equation is solved for different intensities of four
few-cycle laser pulses (cf. Sec. 3.1). Single and double ionization probabilities are
calculated from the wavefunction ψ(x1, x2, T ) after the laser pulse using Eqs. (4.3).

Figure 4.2 shows ionization probabilities for the N = 3-cycle laser pulses with
different wavelengths. The single ionization probabilities increase with increasing
intensity of the laser field, show a maximum around I ≈ 3 × 1015 W/cm2 and de-
crease again for larger intensities for all three laser pulses. The small deviations
from the smooth increase for λ = 248nm are due to the resonant excitation of
bound states in the model atom.

The double ionization probabilities show a “knee structure”, i.e., a change of
sign in the curvature for intensities I ≤ 3 × 1015 W/cm2 due to non-sequential
double ionization, as will be discussed below. With decreasing wavelengths, i.e.,
increasing frequencies the “knee structure” becomes less pronounced. This is due
to multiphoton ionization becoming dominant for larger frequencies compared to
ionization by tunneling.
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Figure 4.2: Single and double ionization probabilities as a function of the
effective peak intensity calculated from the solution of the time-dependent
Schrödinger equation. N = 3-cycle laser pulses with different wavelengths λ
were used.

Comparison of Fig. 4.2 with experimental ionization yields (e.g., left hand side
of Fig. 1.1) shows good qualitative agreement. While we calculate ionization prob-
abilities for a single atom, in experiments the numbers of singly and doubly ionized
atoms are measured. Due to an increase of the focal volume of the laser with in-
creasing intensity the number of singly ionized Helium atoms continues to increase
in experiments for large intensities.

To further elucidate the double ionization process we compare the results from
the time-dependent Schrödinger equation to double ionization probabilities for a
(modeled) sequential ionization process where both electrons are dislodged after
one another without mutual interaction. The first electron has to be removed from
a Helium atom in its groundstate. Therefore we describe the first electron by the
solution φ1 of a single-active electron model (cf. Sec. 3.7).

In this sequential model, after ionization of the first electron a He+ system in its
groundstate is left. The one-electron Schrödinger equation yields φ2 (cf. Sec. 3.6).
The probability for the k-th electron to be still bound follows then from Eqs. (4.4)
as pk(t) =

∫+a
−a dx |φk(x, t)|2. The sequential double ionization probability is inter-

preted as the product of the probabilities that both electrons are free

P 2+

SEQ(t) = [1 − p1(t)] [1 − p2(t)] . (4.5)

This sequential double ionization process yields ionization probabilities at the end
of the laser pulse which are several orders of magnitude too small for intensities
I < 3×1015 W/cm2 compared to the Schrödinger solution, as evidenced by Fig. 4.3
for the λ= 780nm, N = 3-cycle pulse. This is a clear indication that the increase
by several orders of magnitude in the double ionization probability compared to a
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Figure 4.3: Ionization probabilities as a function of the effective peak intensity
of the λ= 780 nm, N = 3-cycle laser pulse. Probabilities calculated from the
time-dependent Schrödinger equation (TDSE) are compared to the probabili-
ties for sequential double ionization (SEQ).

sequential scenario is due to a non-sequential processes, caused by electron-electron
interactions.

However, the numerical complexity of solving the N -electron time-
dependent Schrödinger equation for more complex atoms than Helium makes it
desirable to calculate the ionization probabilities from a numerically less demand-
ing approach for N -electron systems. As explained above time-dependent density
functional theory offers such a description. The ionization probabilities of the
Schrödinger solution will therefore serve as a reference for the calculation of ion-
ization probabilities from time-dependent density functional calculations.

4.3 Ionization Probabilities from TDDFT

As pointed out in Sec. 3.4 a time-dependent density functional calculation for the
model Helium atom consists of solving a single time-dependent Kohn-Sham equa-
tion which yields an orbital φ(x, t). Obtaining ionization probabilities from time-
dependent density functional theory faces two challenges (cf. Sec. 2.2), (a) repro-
ducing the exact densities from the Schrödinger solution and (b) finding the correct
functionals of the density for the calculation of the ionization probabilities.

We will first address (a) in Secs. 4.3.1 and 4.3.2 using a preliminary solution for
(b) and compare different approximations of the correlation potential vc, the only
unknown term in the Kohn-Sham Hamiltonian for our model Helium atom. This
will be followed by a derivation of correct correlated functionals for the ionization
probabilities (Secs. 4.3.3 and 4.3.4) and approximations of these (Secs. 4.3.5 – 4.3.8).
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Figure 4.4: Ionization probabilities calculated from the uncorrelated function-
als using the exact Kohn-Sham orbital (EKSO) compared to results obtained
from the Schrödinger solution (TDSE). Probabilities are shown as a function
of the effective peak intensity of the λ=780 nm, N=3-cycle laser pulse.

4.3.1 Uncorrelated Functionals

A straightforward solution to the problem of finding functionals for the ioniza-
tion probabilities is to interpret the two identical Kohn-Sham orbitals as orbitals
of the real electrons, i.e., writing the wavefunction as a product ψ(x1, x2, t) =
φ(x1, t)φ(x2, t). As pointed out above, this immediately yields uncorrelated func-
tionals for the ionization probabilities, namely Eqs. (4.4). This approach has been
widely used [37,38,40,45] although it does neglect electron correlations. However, as
pointed out in Sec. 4.2 electron-electron interactions are of fundamental importance
for non-sequential double ionization. Therefore one cannot expect this approach
to be sufficient. This limitation becomes clear immediately when using the ex-
act Kohn-Sham orbital φEKSO(x) constructed from the solution of the Schrödinger
equation ψ(x1, x2, t) (cf. Sec. 3.5) in Eqs. (4.4). This orbital gives the exact density
n(x) = nEKSO(x).

The probability for single ionization after interaction with the λ = 780nm,
N = 3-cycle laser pulse is markedly lower in the middle of the intensity regime
shown in Fig. 4.4 than for the fully correlated TDSE solution. For low and high
intensities probabilities match better. In the case of double ionization, this be-
havior is reversed: The probability in the regime of the “knee structure” is too
high by several orders of magnitude. A “knee structure”, i.e., a change of sign in
the curvature as a function of the intensity in the double ionization probabilities
is present but does not reproduce the fully correlated result. This confirms that
even for orbitals which would be obtained if the exact vc was known, the function-
als Eqs. (4.4) and thus a product wavefunction approach are insufficient to describe
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Figure 4.5: Ionization probabilities after interaction with the λ=780 nm, N=
3-cycle laser pulse calculated using the uncorrelated functionals. Probabilities
obtained from the orbitals of calculations with vc = 0 (TDHF) and vLK05

c are
compared to the results for the exact Kohn-Sham orbital (EKSO).

non-sequential double ionization. Nevertheless the functionals Eqs. (4.4) are a valu-
able tool for evaluating the quality of approximations of the correlation potential vc
in the Kohn-Sham equation. Since these functionals include only integrals over the
absolute square of the orbital, the results for the exact Kohn-Sham orbital serve
as a sensitive benchmark for orbitals obtained from calculations with approximate
correlation potentials vc.

4.3.2 Comparison of Correlation Potentials

The uncorrelated ionization probability functionals are evaluated for time-
dependent density functional calculations with the TDHF, LK05 and BW05 ap-
proximations of vc (cf. Sec. 3.4). The probabilities are compared to the results
for the exact Kohn-Sham orbital (Sec. 4.3.1) which is identical to the orbital, a
calculation with the correct correlation potential vc would yield.

In Fig. 4.5 the improvement of the LK05 approximation as compared to a TDHF
approach (vc = 0) is clearly discernible. The ionization probabilities calculated
from the uncorrelated functionals (4.4) reproduce the probabilities from the EKSO
solution better than the TDHF probabilities. Since the EKSO solution gives the
orbitals which one would acquire with the exact vc this is an indication that the den-
sities (since n(x) = 2 |φ(x)|2 in our case) resemble the exact densities better than
the choice vc = 0. This is especially evident in the appearance of a “knee structure”
in the double ionization probabilities which is absent in the TDHF probabilities.
The LK05 potential thus improves at least the integrals of the density over bound
and free states as compared to the TDHF approach. However, for low intensities
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Figure 4.6: Single and double ionization probabilities calculated from the un-
correlated ionization probability functionals. Results for the orbitals obtained
with vBW05

c and vLK05

c are compared to the results a calculation with the exact
vc would yield (EKSO). Probabilities are shown as a function of the effective
peak intensity of the λ=780 nm, N=3-cycle laser pulse.

I ≤ 1×1015 W/cm2 the ionization probabilities are systematically too low for both
approaches (and indeed are similar since vLK05

c ≈ 0 in this intensity regime).

In addition, we found that in vLK05
c the exact form of the prefactor of vhx,

which increases with a decreasing number of bound electrons, has only a negligible
influence on the ionization probabilities. The same is true when the Fermi function
is replaced by a stepfunction at N(t) = 1.

Ionization probabilities of the uncorrelated functionals for the vBW05
c and vLK05

c

calculations are compared in Fig. 4.6. Correcting the change in the ionization po-
tential with decreasing number of bound electrons by leaving vhxc constant over-
compensates the effect, leading to double ionization probabilities larger than the
results for the exact Kohn-Sham orbital. Since probabilities agree well for intensi-
ties with N(T ) ≤ 1 the densities acquired from the vBW05

c calculation confirm the
importance of the discontinuity in vc at N(T ) = 1. However, double ionization
probabilities show an (over-)pronounced change in the sign of the curvature. We
attribute the last effect to the sudden drop in vhxc for N(T ) ≈ 1. From the integral
over bound and free states we thus conclude that vBW05

c is a slightly less accurate
approximation than vLK05

c .

In summary, we have thus confirmed that the LK05 and (to a lesser extent) the
BW05 approximations for vc yield (via the orbitals) densities which give results
for the uncorrelated ionization probability functionals in good agreement with the
results one would acquire for the exact vc.
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4.3.3 Correlated Functionals

In Sec. 4.3.1 it was shown that the uncorrelated functionals of Eq. (4.4) are insuf-
ficient to obtain agreement with the ionization probabilities from the solution of
the Schrödinger equation. This holds true even if the exact vc potential in a time-
dependent density functional calculation was known, as evidenced by the results
acquired with the exact Kohn-Sham orbital.

For a general three-dimensional time-dependent system of N electrons we in-
troduce the diagonal of the reduced two-electron density matrix

ρ(r1, r2, t) = N (N − 1)

∫
d3r3 · · ·

∫
d3rN |ψ(r1, r2, r3, · · · , rN , t)|2 (4.6)

and the time-dependent exchange-correlation function [40]

gxc(r1, r2, t) =
ρ(r1, r2, t)

n(r1, t)n(r2, t)
, (4.7)

where we have suppressed spin-indices.

For the one-dimensional two-electron model Helium atom, these expressions
reduce to

ρ(x1, x2, t) = 2 |ψ(x1, x2, t)|2 (4.8)

and

gxc[n](x1, x2, t) =
ρ(x1, x2, t)

n(x1, t)n(x2, t)
, (4.9)

where ψ(x1, x2, t) is the solution of the time-dependent Schrödinger equation. The
density n(x, t) dx gives the probability to find one of the electrons at time t at x in
dx. The joint probability to find an electron at time t at x1 in dx1 and an electron
at x2 in dx2 is ρ(x1, x2, t) dx1 dx2. We will therefore refer to ρ as the pair density of
the system. Hence, n(x2, t) gxc(x1, x2, t) dx2 gives the conditional probability to find
at time t an electron at x2 in dx2, if there is an electron at x1. This interpretation
of the correlation function as a probability, which is an observable, assures by virtue
of the Runge-Gross theorem (Sec. 2.1) that the correlation function can in principle
be expressed exactly as a functional of the density [40] as indicated in Eq. (4.9).
For notational ease we will not explicitly write out the functional dependence on
the density in the following sections though.

The density of our model atom is related to the pair density by

n(x, t) =

∫
dx2 ρ(x, x2, t) =

∫
dx1 ρ(x1, x, t) (4.10)

but can in principle also be obtained exactly from the orbital φ of a time-dependent
density functional calculation (cf. Sec. 3.4) with the exact vc:

n(x, t) = 2 |φ(x, t)|2. (4.11)
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With P 0+ P++ P 2+ = 1, Eqs. (4.10) and (4.9) can be used to express the ioniza-
tion probabilities given by Eqs. (4.3) for ψ(x1, x2, t) in terms of the density and
the exchange-correlation function [40]. Then the correlated ionization probability
functionals are

P 0(t) =
1

2

∫ +a

−a
dx1

∫ +a

−a
dx2 gxc (x1, x2, t) n(x1, t)n(x2, t) ,

P
+
(t) =

∫ +a

−a
dxn(x, t)

−
∫ +a

−a
dx1

∫ +a

−a
dx2 gxc (x1, x2, t) n(x1, t)n(x2, t) ,

P 2+
(t) = 1 −

∫ +a

−a
dxn(x, t)

+
1

2

∫ +a

−a
dx1

∫ +a

−a
dx2 gxc (x1, x2, t) n(x1, t)n(x2, t) . (4.12)

We write Eq. (4.9) as a sum of the exchange function gx and the correlation
function gc. For a system with a two-electron wavefunction that can be expressed
exactly as a product wavefunction one has

gxc (x1, x2, t) = gx(x1, x2, t) =
1

2
. (4.13)

This assumption is made in time-dependent Hartree-Fock calculations (which for
the model Helium atom correspond to density functional calculations with vc =
0, cf. Sec. 3.4) and leads to the uncorrelated ionization probability functionals of
Eqs. (4.4). These functionals follow directly from Eqs. (4.12) by setting gxc =gx = 1

2 .
With Eq. (4.13) the correlation function gc is given by

gc (x1, x2, t) =
ρ(x1, x2, t)

n(x1, t)n(x2, t)
− 1

2
. (4.14)

For use in the following sections we note that due to Eq. (4.10) the correlation
function fulfills the integration constraints

∫
dx1 n(x1, t) gc (x1, x2, t) =

∫
dx2 n(x2, t) gc (x1, x2, t) = 0 . (4.15)

We define the correlation integral

Ic(t) =

∫ +a

−a
dx1

∫ +a

−a
dx2 n(x1, t)n(x2, t) gc (x1, x2, t) , (4.16)

which is a functional of the density since gc[n] = gxc[n] − 1/2 is a functional of
the density. The correlated ionization probability functionals (4.12) can then be



4.3. Ionization Probabilities from TDDFT 29

written as the sum of the uncorrelated functionals (4.4) and a correction term (4.16)
solely depending on the correlation integral:

P 0(t) = [p(t)]2 +
1

2
Ic(t) ,

P
+
(t) = 2 p(t) [1 − p(t)] − Ic(t) ,

P 2+
(t) = [1 − p(t)]2 +

1

2
Ic(t) ,

p(t) =

∫ +a

−a
dx |φ(x, t)|2 =

1

2

∫ +a

−a
dxn(x, t) . (4.17)

It is important to note that with Eqs. (4.17) the information required to calculate
the exact ionization probabilities is reduced to the knowledge of (a) the exact den-
sity in the range −a ≤ x ≤ +a and (b) the exact correlation function gc in A(He)
(4.2). Thus, only information about the system close to the Helium nucleus is
needed. This result is remarkable and counterintuitive, at least at first sight. An
explanation is provided by the observation that the density of the system (4.10) in
the range −a ≤ x ≤ +a, through the integration over one electron coordinate, im-
plicitly includes information about the probability for single ionization as calculated
from the absolute square of the (correlated) wavefunction ψ in Eqs. (4.3).

The exact functional dependence of gc on n is not known and the calculation
of the pair density ρ(x1, x2, t) at time t = T is computationally demanding even
for the one-dimensional model Helium atom. Therefore, it is necessary to find a
suitable approximation for gc (or actually Ic) after the laser pulse in A(He) in order
to express the ionization probabilities in terms of quantities that can be calculated
easily numerically and therefore allow the approach to be carried over to more
complex systems than Helium.

4.3.4 Exact Correlation Integral

For the one-dimensional model Helium atom we solve the Schrödinger equation nu-
merically (cf. Sec. 4.2) and obtain the exact two-electron pair density via Eq. (4.8).
As a reference for the quality of approximations we calculate the exact gc (4.14)
and Ic (4.16) from this solution.

Figure 4.7 shows the contour plots of the integrand of the exact Ic at time t=T
after interaction with the λ=780nm, N =3-cycle laser pulse for different effective
peak intensities of the laser field. The structure of the integrand in the two-electron
space is remarkably simple. From Eq. (4.16) it is clear that this is caused by the
multiplication of the correlation function by the density, which has a maximum at
the origin. For higher intensities the integrand approaches a product of a constant
factor and the density at x1 and x2. The integrands for the three other N=3- and
N = 4-cycle laser pulses (see Sec. 3.1) reveal a qualitatively similar structures for
the respective intensities.

The values of Ic for the laser pulses with λ= 614nm (N = 3) and λ= 780nm
(N=3, 4) are depicted in Fig. 4.8. The qualitative dependence on the effective peak
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Figure 4.7: Contour plots of the exact integrand of Ic(T ) for different effective
peak intensities of the λ=780 nm, N=3-cycle laser pulse.

intensity of the laser field is similar for all three laser pulses. For the groundstate
and low intensities we observe |Ic(T )| ≤ 10−4. A distinct, single minimum is found
at I ≈ 3 × 10−15 W/cm2. This is the intensity regime of the onset of the “knee
structure” in the double ionization probability. For larger intensities, the absolute
value of Ic decreases again. The slightly deviating behavior at high intensities for
the N = 4 laser pulse may be related to the fact that a non-negligible amount
of probability density has left the grid, i.e., has been absorbed by the absorbing
boundary described in Sec. A.8.

The number of bound electrons after the laser pulse is given by Eq. (3.10) as

N(T ) =

∫ +a

−a
dxn(x, T ) . (4.18)

The value of the correlation integral shows nearly the same quantitative dependence



4.3. Ionization Probabilities from TDDFT 31

Figure 4.8: Values of Ic(T ) for different N -cycle laser pulses of wavelength
λ as a function of the effective peak intensity (left) and the number of bound
electrons after the laser pulse (right).

on N(T ) for all three laser pulses: A minimum of Ic ≈ −0.4 at N(T )=1 and Ic ≈ 0
at N(T ) = 2. This result might point to a more fundamental relation between Ic
and N(T ) and thus underlines the importance of the number of bound electrons for
the value of Ic. It is interesting to note that N(t) is also crucial for approximating
vc in ionization processes [45,50]. Furthermore, our calculations seem to imply that
Ic[N = 1 − ε] 6= Ic[N = 1 + ε] holds, i.e., that the value of the correlation integral
changes discontinuously when an integer number of bound electrons is passed. For
the λ = 248nm laser pulse, the high frequency leads to resonant excitations of the
atom for high intensities (cf. Sec. 4.2). For these intensities the dependence of Ic
on both the effective peak intensity I as well as on the number of bound electrons
N(T ) deviates to some extent from the relation found for the other laser pulses.

Using Eqs. (4.17), the values of Ic for intensities I ≤ 3 × 10−15 W/cm2 lead to
corrections of the uncorrelated double ionization probabilities by a term of compara-
ble size as the uncorrelated probabilities themselves. Therefore, any approximation
of Ic has to be very accurate in order to yield double ionization probabilities close
to the exact values.

4.3.5 Approximation of the Correlation Integral

As pointed out in Sec. 4.3.3 an approximation of gc(x1, x2, T ) and thus of Ic(T ) is
essential in order to make use of the correlated ionization probability functionals
(4.17) for other systems than the model Helium atom. Since these functionals
assure that knowledge of gc is only needed in the immediate vicinity of the Helium
nucleus after interaction with the laser pulse, approximations using groundstate
properties of the model Helium atom seem promising.
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It was argued [53] that approximations of the groundstate correlation function
are not applicable for the description of ionization processes because they include
the assumption that gc → 0 as the inter-electron distance becomes large. Thus only
short-range correlations are modeled. After ionization of an atom by a laser pulse,
electrons will be separated by distances large compared to inner-atomic distances
in the groundstate of an atom. Therefore long-range correlations are of significant
importance. However, due to Eqs. (4.17), which can be generalized to three dimen-
sions, only the correlation function in the vicinity of the Helium nucleus is relevant
to calculate ionization probabilities. Hence, to approximate Ic only correlations on
the lengthscale of the groundstate correlations need to be modeled.

When trying to approximate gc only in A(He), it is essential to realize that
the integration constraints (4.15) cannot be fulfilled anymore. This can be seen by
the following argument. The integration

∫
dxi n(xi, t) gc(xi, xj 6=i, t) = 0 with i, j ∈

{1, 2} is carried out over the whole space for one coordinate. In the groundstate
n(|x| > a) ≈ 0 because the electrons are bound to the nucleus. Then, in order to
fulfill the constraints, gc only needs to be known for |xi| ≤ a. After ionization at
t = T however, n(|x| > a) 6= 0 and the constraints can be fulfilled only if gc is
also approximated for |xi| > a. This is in contradiction to our assumption that we
approximate gc only in A(He).

We will present three different approaches to the approximation of the corre-
lation integral Ic. First, we use densities after the interaction with the laser pulse
in a groundstate correlation function (Sec. 4.3.6). Then we will show in Sec. 4.3.7
how results can be significantly improved by introducing an adiabatic approxima-
tion of gc. Finally it is shown that using a fit function to describe Ic(N) offers
an additional promising route to approximate the correlated ionization probability
functionals (Sec. 4.3.8).

4.3.6 Becke Approximation

One possibility to approximate gc is to make use of well-established correlation
functions for stationary states from groundstate density functional theory and in-
corporate a time-dependence by using the density at the respective time t [40]:

gc[n](x1, x2, t) ≈ gc[n (t)](x1, x2) . (4.19)

This approach was applied [40] for two different approximations of the groundstate
correlation function [54,55] to calculate Ic for Helium after interaction with a laser
field. Using densities from a three-dimensional time-dependent density functional
calculation yielded values for Ic which were significantly too low to correct the
uncorrelated ionization probabilities [40].

For our one-dimensional system, one of these groundstate correlation functions,
the Becke correlation function [40,54], is given by

gB
c (x1, x2, t) =

(|x1 − x2| − z(x1))

2 (1 + z(x1))

n(x1, t)

n(x2, t)
F (γ |x1 − x2|) , (4.20)
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with z and γ functions of the time t. The “correlation length” z(x1, t) gives the
inter-electron distance at which the correlation function gc changes its sign. In
the groundstate case the correlation length is written as z(x) = 2 cRF(x). The
“Fermi hole radius” RF(x) is deduced from a functional for the exchange energy
Ex = −1

2

∫
dxn(x) (RF(x))−1. Using the local density approximation (LDA) func-

tional the proportionality constant c was found to be c = 0.62 by comparison
with an established parameterization of the functional [54]. For the Helium atom
the Hartree-Fock exchange energy functional Ex = −1

2

∫
dxn(x) (vh(x)/ 2) is the

exact exchange energy functional, yielding RF(x) = 2/vh(x). We therefore have
z(x, t) = 2.48 / vh(x, t) [40].

For the damping function F (x) several choices were suggested [54] which all
exhibit quadratic behavior for small x, ensuring the validity of the short-range
expansion of the pair density employed to derive Eq. (4.20). Since results are found
to be insensitive to the choice of the damping function we only make use of

F (x) = (1 + x) e−x . (4.21)

The parameter γ = γ(x1, t) in Eq. (4.20) is chosen to fulfill the integration
constraint (4.15) with respect to x2

∫
dx2 n(x2, t) g

B
c (x1, x2, t) = 0 . (4.22)

Since z depends only on x1 this yields with u = γ |x1 − x2| the explicit equation
for the one-dimensional case

γ(x1, t) =
1

z(x1, t)

∫∞
0 duuF (u)∫∞
0 duF (u)

. (4.23)

For the damping function (4.21) employed here this gives γ(x1, t) = 3/[2 z(x1, t)].
The exact gc is symmetric in the electron coordinates x1, x2. In contrast,

the Becke correlation function uses x1 as a “reference variable” around which an
expansion of the pair density is carried out. It should be noted however, that the
correlation integral IB

c which follows as

IB
c =

∫ +a

−a
dx1

∫ +a

−a
dx2 n(x1)n(x2) g

B
c (x1, x2, t)

=

∫ +a

−a
dx1

∫ +a

−a
dx2 [n(x1)]

2 (|x1 − x2| − z)

2 (1 + z)
F (γ |x1 − x2|) , (4.24)

with IB
c and n functions of time t and z = z(x1, t), γ = γ(x1, t), yields the same

value for the Becke construction with respect to x2. This can be seen by inter-
changing indices in Eq. (4.24).

From Fig. 4.9 we infer that in our case Eq. (4.20) yields values for the correlation
integral IB

c (T ) which are far from the exact results even when the densities of the
exact Kohn-Sham orbital are used. In addition, it does not reproduce the marked
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Figure 4.9: Value of the Becke approximation IB
c (T ) of the correlation integral

as a function of the number of bound electronsN(T ) compared to the exact val-
ues Ic(T ). The exact densities (nEKSO) were used as inputs for IB

c (T ). Results
for three different laser pulses are shown with different symbols (cf. Fig. 4.8).

minimum at N(T ) = 0. In contrast to earlier work [40] the order of magnitude of
IB
c is, however, correct.

The derivation of Eq. 4.20 is based on an expansion of the pair density for short
inter-electron distances, which in turn is related to the expansion of a two-electron
wavefunction around |r1 − r2| = 0 [56, 57]. In the latter case, the prefactors for
the first terms of the expansion are derived by ensuring that the three-dimensional
Schrödinger equation is fulfilled for the expanded wavefunction for |r1 − r2| → 0.
A similar approach employing the one-dimensional Schrödinger equation of the
model Helium atom with soft-core potentials does not yield the same results. This
is a possible reason why even for the groundstate at t0 = 0 the Becke correlation
function in the form of Eq. (4.20) does not give a sensible result for IB

c .

The Becke model yields gB
c = 0 for large inter-electron distances due to the

damping function F (γ |x1 − x2|). The damping factor γ is constructed in a way
that the integration constraint (4.22) is always fulfilled. As pointed out in Sec. 4.3.5
an approximation of gc which is valid only in the vicinity of the Helium nucleus
will not fulfill the integration constraints at time t = T because the density has
non-negligible values for |xi| > a. Hence, the damping function forces the Becke
correlation function to give incorrect values, although, as our adiabatic approxima-
tion shows, an approximation of gc from groundstate properties can be successful.

4.3.7 Adiabatic Approximation

In order to find an approximation for the exchange-correlation function (4.9) we
approximate numerator and denominator separately using groundstate (pair) den-
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sities. The relation gc = gxc − 1
2 then allows us to calculate gc and thus via Ic the

correlated ionization probability functionals (4.17).
In this section we will refer to groundstate densities of an i-electron system by

ni and to groundstate pair densities of an i-electron system by ρi.

Adiabatic Density

The density of our model Helium atom close to the Helium nucleus is assumed to
be a linear combination of the groundstate densities of two-, one- and zero-electron
systems [45,50],

nA(x, t) =

{
[1 −N(t)] n0(x) +N(t)n1(x) 0 ≤N(t)≤ 1
[2 −N(t)] n1(x) + [N(t) − 1] n2(x) 1 ≤N(t)≤ 2

, (4.25)

weighted by factors related to the fractional number of bound electrons (3.10)

N(t) =

∫ +a

−a
dxn(x, t) . (4.26)

The coefficients determine the relative contribution of the integer-electron ground-
state densities to the system with fractional electron number N(t). Since n(x) dx
is the probability to find an electron at x in dx, the groundstate density for the
zero-electron system has to vanish: n0 = 0. For our system, n1(x) is the ground-
state density of He+, which is calculated from the solution of the respective one-
dimensional stationary Schrödinger equation (cf. Sec. 3.6). Consistently we use
n2(x) = n(x, t = 0) where n denotes the density utilized to calculate N(t) in
Eq. (4.26).

Construction of a normalized Kohn-Sham orbital from nA(x, t) allows the cal-
culation of the respective groundstate correlation potential vc using the stationary
Kohn-Sham equation [45]. It was recently shown that calculating this vc for each
time t and using it in a time-dependent Kohn-Sham calculation of the ionization
process of Helium yields orbitals with uncorrelated ionization probabilities (4.4)
in good agreement with the probabilities for the exact Kohn-Sham orbital [50].
This corroborates further the assumption that the form of Eq. (4.25) is a good
approximation of the density of the system close to the nucleus.

Adiabatic Pair Density

Since an adiabatic approximation of the density of the system has proven successful
for the calculation of vc (cf. comments in the previous section) and due to the central
role of N(t) for the value of Ic indicated by the results of Sec. 4.3.4 we approximate
the pair density analogously to the density of the system.

Assuming the same adiabatic dependence of ρA(t) on N(t) as for the density
yields

ρA(x1, x2, t) =

{
[1 −N(t)] ρ0 +N(t) ρ1 0 ≤N(t)≤ 1
[2 −N(t)] ρ1 + [N(t) − 1] ρ2 1 ≤N(t)≤ 2

. (4.27)
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where ρi = ρi(x1, x2). From Eq. (4.8) we know

ρ2(x1, x2) = 2 |ψ(x1, x2, t0)|2 . (4.28)

In Sec. 4.3.3 we pointed out that the pair density is proportional to the joint prob-
ability to find an electron at x1 in dx1 and an electron at x2 in dx2. From this
interpretation follows

ρ0(x1, x2) = 0 , ρ1(x1, x2) = 0 . (4.29)

Rewriting Eq. (4.27) by using Eq. (4.29), the adiabatic approximation of the
pair density is

ρA(x1, x2, t) =

{
0 0 ≤N(t)≤ 1
[N(t) − 1] ρ2(x1, x2) 1 ≤N(t)≤ 2

. (4.30)

This result means that for N(t) ≤ 1 all correlation effects vanish, i.e., only a one-
electron system is left containing no information about the fact that one electron
belonging to the original system has been detached from the atom. This might
suggest the necessity to include memory effects in a refined approximation of the
pair density.

Adiabatic Correlation Integral

With the adiabatic approximations nA (4.25) and ρA (4.30) we use Eq. (4.14) to
arrive at an adiabatic approximation of the correlation function

gA
c (x1, x2, t) =






−1
2 0 ≤ N(t) ≤ 1

ρA(x1, x2, t)
nA(x1, t)n

A(x2, t)
− 1

2 1 ≤ N(t) ≤ 2
. (4.31)

It should be noted that in this form, the approximation returns the exact correlation
function for the groundstate at t0 = 0. Due to its relation to groundstate properties
our adiabatic approximation can only be valid in the immediate vicinity of the
Helium nucleus. Therefore it does not fulfill the integration constraints (4.15) as
explained in Sec. 4.3.5.

The correlation integral IA
c can now be calculated from Eq. (4.16) using the same

densities as in N(t) (4.26). To compute IA
c the following inputs are needed: The

density of the system for all times, the groundstate density of He+ and the ground-
state pair density. The density can in principle be obtained by a time-dependent
density functional calculation with the correct choice for vc. The groundstate in-
puts are accessible numerically also for more complex atomic systems than Helium.
Furthermore, the groundstate pair density in full dimensionality can be calculated
approximately via one of the approximations for the groundstate correlation func-
tion discussed in Sec. 4.3.6. Then only densities are needed as inputs.
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Figure 4.10: Contour plots of the integrand of the adiabatic approximation
IA
c (T ) using the densities of the exact Kohn-Sham orbital for different effective

peak intensities of the λ=780 nm, N=3-cycle laser pulse.

Figure 4.10 shows the integrand of the adiabatic correlation integral IA
c (T )

using the densities of the exact Kohn-Sham orbital for the λ = 780nm, N = 3-
cycle laser pulse. The qualitative agreement with the exact integrand shown in
Fig. 4.7 is generally good. Furthermore, the maximum and minimum values of the
integrand are close to the exact values. This is a strong indication that the adiabatic
approximation of gc captures the essential features which contribute to Ic. For the
other laser pulses the agreement is similarly good, except for the λ = 248nm pulse.
In this case (as explained in Sec. 4.3.4) resonant excitations of the model Helium
atom are present, a situation not included in our approximation which assumes the
bound density to be in the groundstate.

In Sec. 4.3.4 we described that Ic depends on N(T ) in a similar way for the
λ=614nm (N =3) and λ=780nm (N =3, 4) laser pulses. The value of IA

c (T ) as
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Figure 4.11: Adiabatic approximation of the correlation integral IA
c (T ) calcu-

lated using densities of the exact Kohn-Sham orbital (nEKSO) compared to the
exact values Ic(T ) as a function of the number of bound electronsN(T ). Results
for three different laser pulses are shown with different symbols (cf. Fig. 4.8).

calculated from the exact densities nEKSO is compared to the exact value (4.16) in
Fig. 4.11. The adiabatic approximation exhibits qualitatively the same dependence
on the number of bound electrons as the exact values. However, for N(T )≈1.0 the
value differs significantly from the exact result and is IA

c = −1/2 for N(T )=1.

With IA
c (T ) and Eqs. (4.14) we have thus found an approximation of the cor-

related ionization probability functionals. For N(T ) = 1, IA
c = −1/2 yields the

unphysical value P 2+(T ) = 0. However, good results are already acquired for N(T )
only slightly smaller or larger than one, as is shown below. Figure 4.12 depicts ion-
ization probabilities calculated from EKSO and LK05 densities for the λ=780nm,
N = 3 cycle laser pulse. Comparing these results to the results from the uncor-
related functionals (4.4) in Figs. 4.4 and 4.5 evidences a significant improvement.
The systematically too low values for the single ionization probability in the range
I ≈ 1 − 8 × 1015 W/cm2 are corrected, while for lower intensities the LK05 proba-
bilities remain too low. Double ionization probabilities show a good agreement for
high intensities. For low intensities the double ionization probabilities (and IA

c ) are
so small that already small deviations of IA

c from the exact Ic lead to relatively large
deviations in the logarithmic plot of the ionization probabilities and to minima and
maxima in the double ionization probability. Since IA

c = −1/2 at N(T ) = 1, i.e.,
P 2+ = 0 the adiabatically corrected probabilities show a minimum at intensities
when the curvature of the exact probabilities changes its sign at the onset of the
“knee-structure”.

An alternative approach to an adiabatic approximation of Ic exists. With
Eqs. (4.16) and (4.14) the densities in the first term cancel and only an adiabatic
approximation of ρ(x1, x2, t) is necessary. However, this yields P 2+(T ) = 0 for all
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Figure 4.12: Ionization probabilities as a function of the effective peak in-
tensity calculated using the adiabatic approximation IA

c (T ) in the correlated
ionization probability functionals. Results obtained with the exact densities
(EKSO) and LK05 densities are compared to the Schrödinger solution (TDSE)
for the N=3 cycle laser pulse with λ=780 nm.

N(T ) ≤ 1. In addition, the agreement of the contour plots of the integrand with
the exact integrand is not as good as in our approximation. This indicates that
the approach described above is superior because it approximates the correlation
function as a whole and thus relates pair densities and densities computed using
the same approximation.

With the adiabatic approach we have thus identified an approximation of the
correlation function gc close to the Helium nucleus and hence of the correlated ion-
ization probability functionals which significantly improves the results for ionization
probabilities compared to the uncorrelated functionals [58].

4.3.8 Fit Function Approximation

In Sec. 4.3.4 we found that the value of the correlation integral Ic(T ) depends on the
number of bound electrons N(T ) in a quantitatively similar way for the λ=614nm
(N = 3) and λ= 780nm (N = 3, 4) laser pulses. Therefore we approximate Ic by
using a parameter-dependent fit function IF

c [N(t)] and determine the parameters
by fitting to the results from the exact Ic for all three pulses.

Based on the results for N(T ) depicted in Fig. 4.8 we choose the general depen-
dence on the number of bound electrons as

IF
c (t) =

{
a |N(t) − 1| e−|N(t)−1| + b 0 ≤ N(t) ≤ 1

a |N(t) − 1| e−|N(t)−1| + c 1 ≤ N(t) ≤ 2
. (4.32)

Since the exact values Ic from our calculations imply that Ic[N=1−ε] 6= Ic[N=1+ε]
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Figure 4.13: Comparison of the fit function approximation of the correlation
integral IF

c (T ) calculated using the exact densities nEKSO with the exact values
of Ic(T ) as a function of N(T ). Results for three different laser pulses are
shown with different symbols (cf. Fig. 4.8).

as described in Sec. 4.3.4 we choose b and c differently depending on whether the
number of bound electrons is above or below one.

One should note that IF
c is a functional of the density because N(t) is an

integral over the density (cf. Eq. (4.26)). Using the results N(T ) and the values
Ic[N(T )] from the time-dependent Schrödinger equation for the different effective
peak intensities of the three laser pulses, a least squares fit yields a = 1.1335,
b = −0.4694 and c = −0.4196. The value of the root-mean-square error

〈 [
IF
c (N) − Ic(N)

]2 〉1/2
= 1.48 × 10−2 (4.33)

shows that this approach yields a generally good agreement with the exact Ic.
This is confirmed by Fig. 4.13 which compares the values of IF

c (T ), where N(T ) is
calculated from the densities of the exact Kohn-Sham orbital nEKSO, to the exact
values Ic(T ).

Using IF
c (T ) in the correlated ionization probability functionals (4.16) yields

functionals which depend only on the density. Calculations with the exact (nEKSO)
and LK05 densities (nLK05) are shown in Fig. 4.14 for the λ = 780nm, N = 3-
cycle laser pulse. In both cases the “knee structure” is clearly reproduced and
overall agreement with the ionization probabilities from the Schrödinger solution
is good for intensities I ≥ 1 × 1015 W/cm2. For lower intensities probabilities are
systematically too low (the probabilities are of the order of the root-mean-square
error in this intensity regime).

Using the fit function approximation IF
c of course requires the dependence of Ic

on N(T ) to be independent of the laser pulse used. The results for the three pulses
in Sec. 4.3.4 show that this seems to be a reasonable assumption. As discussed
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Figure 4.14: Single and double ionization probabilities for exact (EKSO) and
LK05 densities using the fit function approximation of the correlated ioniza-
tion probability functionals compared to the results from the time-dependent
Schrödinger equation (TDSE). Probabilities are shown as a function of the
effective peak intensity of the N=3 cycle laser pulse with λ=780 nm.

in Sec. 4.3.4 this does hold true only partly when resonant excitations in the atom
take place as in the case of the λ = 248nm laser pulse. Nevertheless the fit function
approximation still yields a reasonable correction to ionization probabilities in this
case, while the adiabatic approximation IA

c presented in Sec. 4.3.7 fails to provide a
good approximation because of it being based on the assumption that the density
remaining bound is in the groundstate.

In addition to the general adiabatic approximation of the correlation function
gc we have thus identified a simpler approach to obtain approximations for the
correlated ionization probability functionals (4.17), as the groundstate pair density
is not required as an input.





Chapter 5

Momentum Distributions

As explained in Chapter 4 in a Helium atom interacting with a few-cycle laser
pulse double ionization proceeds non-sequentially in a certain intensity regime. By
analyzing the distribution of electron and ion momenta after the double ioniza-
tion further details of how this process works can be obtained. We introduce the
momentum pair density of the free electrons (Sec. 5.1) and the ion momentum den-
sity (Sec. 5.2). A classical picture of the possible non-sequential double ionization
processes is presented (Sec. 5.3) and shown to be in agreement with results from
the time-dependent Schrödinger equation for our model Helium atom (Sec. 5.4).
Calculation of momentum distributions from a time-dependent density functional
treatment by using uncorrelated functionals is shown to be insufficient (Sec. 5.5.1)
while providing a further measure of the quality of approximations of the correlation
potential vc (Sec. 5.5.2). A promising route to correlated functionals for momentum
distributions is presented (Sec. 5.5.3).

It should be noted that at times t < T during the laser pulse the velocity of the
electrons is actually given by dtxi(t) = ki(t) + A(t), i.e., the sum of the canonical
momentum ki and the value of the vector potential at the respective time. The
results and equations presented in this chapter refer to canonical momenta k only
because the drift momentum of the electrons at time t = T after the laser pulse is
identical to the canonical momentum at that time as A(T )=0.

As we are interested in identifying approaches to reproduce results of the time-
dependent Schrödinger equation using time-dependent density functional theory
we will restrict ourselves to the λ = 780nm, N = 3-cycle laser pulse. We stress
however that the general conclusions drawn hold also for the λ = 614nm, N = 3
and λ=780nm, N=4 laser pulses.

5.1 Calculation of the Momentum Pair Density

After interaction with a laser pulse the correlated two-electron wavefunction of the
model Helium atom is given by ψ(x1, x2, T ). As we know from basic quantum
mechanics [59] the wavefunction can be described equivalently in momentum space

43
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by Fourier transforming it

ψ(k1, k2, t) = (2π)−1
∫

dx1

∫
dx2 ψ(x1, x2, t) e−i (k1 x1+k2 x2) . (5.1)

Since
∫

dk1
∫

dk2 |ψ(k1, k2, t)|2 = 1 the pair density in momentum space is given by
ρ(k1, k2, t) = 2 |ψ(k1, k2, t)|2.

We are interested mainly in the double ionization process and thus Fourier trans-
form only the wavefunction in the area A (He2+) (4.2) associated with double ion-
ization. The resulting sharp step at the boundary of A (He2+

) at |xi| = a, |xj 6=i| ≥ a
with i, j ∈ {1, 2} is a potential source of artifacts when Fourier transformed. Hence,
a “smoothing” function

f(x1, x2) =
1√

1 + e−c |x1−a|

1√
1 + e−c |x2−a|

(5.2)

is introduced. The factor c has to be of the order of one, in this work we choose
c = 1.25 while a = 6a.u. (as explained in Sec. 4.1). The smoothing function is
constructed so that

∫∫
dx1dx2 f

2(x1, x2) b =
∫∫

A (He2+) dx1 dx2 b for a constant b.

This condition ensures that the wavefunction ψ(2+)(x1, x2, t) = f(x1, x2)ψ(x1, x2, t)
gives to a good approximation the same double ionization probability as the original
wavefunction, i.e., that

∫
dx1

∫
dx2 f

2(x1, x2)|ψ(x1, x2, t)|2 ' P 2+.
After double ionization of the model Helium atom the correlated wavefunction

of the electrons freed in double ionization in momentum space is thus calculated as

ψ(2+)(k1, k2, t) = (2π)−1
∫

dx1

∫
dx2 ψ

(2+)(x1, x2, t) e−i (k1 x1+k2 x2) . (5.3)

This approach is equivalent to projecting out the states corresponding to single and
no ionization and is known to lead to valuable momentum distributions [48]. From
the wavefunction we construct the momentum pair density of the electrons freed
in double ionization

ρ(2+)(k1, k2, t) = 2 |ψ(2+)(k1, k2, t)|2 . (5.4)

The probability to find at time t an electron freed in double ionization with mo-
mentum k1 in dk1 and an electron with k2 in dk2 is then ρ(2+)(k1, k2, t) dk1dk2.

5.2 Calculation of the Ion Momentum Density

In experiments, it is easier to measure the momentum of the He2+
ion kIon after

double ionization instead of individual electron momenta. As the photon momenta
are negligibly small in the intensity regime of interest, this provides information
about the sum of the electron momenta via momentum conservation

k1 + k2 = −kIon . (5.5)
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From the wavefunction of the electrons freed in double ionization in momentum
space (5.3) the ion momentum density follows with Eq. (5.5) as

n
(2+)
Ion (kIon, t) =

1

2

∫
dk ρ(2+)(−kIon− k, k, t)

=
1

2

∫
dk ρ(2+)(k,−kIon− k, t) , (5.6)

due to the symmetry of the electron momentum pair density. The factor 1/2
ensures the correct normalization, since the system consists of only one ion but two

electrons. The ion momentum density n
(2+)
Ion (kIon, t) dkIon gives the probability to

find at time t the He2+ ion with momentum kIon in dkIon.

5.3 Classical Picture of Double Ionization

The different double ionization processes and the resulting ion momentum density
are highlighted by a classical description of the ionization process. For the λ =
780nm, N=3-cycle laser pulse and the intensities studied in this work the system is
in the tunneling regime. Therefore, the first electron is preferentially emitted when
the electric field E(t) = −∂tA(t) has a maximum, i.e., when the vector potential
goes through zero A(te1)=0. Classically, we have for the kinetic momentum of the
electron p(t) = A(t)−A(te1). Hence, the first electron leaves the atom by tunneling
with zero initial momentum. The same holds true for sequential ionization of a
second electron without interaction with the first electron. Then, after the laser
pulse, because A(T ) = 0 and with Eq. (5.5) an ion momentum density centered
around a maximum at zero momentum is expected. However, the first electron
can return to the He

+
ion. This may happen at A(t) 6= 0. The momentum of

the recolliding first electron may be shared with the bound electron, which in turn
may be dislodged as well. If recollision occurs at |A(t)| ≈ Âeff , i.e., close to the
maximum of the vector potential, the absolute value of the final sum momentum of
the two electrons will be at most 2 Âeff = 4

√
Up with the ponderomotive potential

Up = Â2
eff/4. Since the sum of the electron momenta is via momentum conservation

(5.5) equal to the negative ion momentum this recollision process results in an ion
momentum distribution with distinct maxima at non-zero momenta. In case the
first electron returns to the ion, it can also excite the second electron which is freed
during a later laser cycle at A(te2) = 0 [12]. Then, the resulting ion momentum
is the negative of the remaining momentum of the first electron, which in general
will be small. This entails an ion momentum density with a maximum at zero
momentum, which is broadened compared to the density for sequential ionization.
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5.4 Momentum Distributions from the TDSE

From our numerical solution of the time-dependent Schrödinger equation we ob-
tain ψ(x1, x2, t) in the two-electron real space as a matrix on the numerical grid
(cf. Sec.A.3). To implement the equations of Secs. 5.1 and 5.2, we use a fast Fourier
transformation algorithm. Integrals are approximated by a Riemann sum while in-
finite integral limits are replaced by the boundaries of the numerical grid.

5.4.1 Momentum Pair Density

The analysis of the momentum pair density of the electrons freed in double ioniza-
tion reveals a wealth of information about the double ionization process. In Fig. 5.1
the pair density at the end of the laser pulse at time t = T as calculated from the
solution of the time-dependent Schrödinger equation and Eq. (5.4) is shown. For all
but the highest intensity depicted, electrons have the highest probability to move
at different velocities |k1| 6= |k2| (dt xi(T ) = ki(T ) since A(T )=0) but in the same
direction (sgn(k1) = sgn(k2)). Depending on the intensity of the laser pulse the
probability for the double ionization process is highest at different half-cycles of the
laser pulse, i.e., different signs of the vector potential. Therefore, the favored di-
rection in which the electrons leave the atom varies with intensity. As explained in
Sec. 5.3 non-sequential double ionization can be understood by a recollision mecha-
nism where one electron returns to the He

+
ion and frees the second electron. The

results of the time-dependent Schrödinger equation then imply that both electrons
leave the atom in the same direction but due to Coulomb repulsion their veloc-
ities differ. The “butterfly” shape of the momentum pair density as in Fig. 5.1
is evidence that the momentum pair density is highly correlated as it cannot be
reproduced by multiplying two orbitals for the respective electrons.

For I=6.96 × 1015 W/cm2 both electrons have the highest probability to leave
the atom in the same direction with similar velocities k1 ≈ k2. As pointed out
above, this can only be the case when the Coulomb repulsion between the electrons
is weak, i.e., when they are removed sequentially, resulting in a large spatial sep-
aration. The fact that double ionization proceeds sequentially at this intensity is
corroborated by Fig. 4.3 which shows that the double ionization probability can be
reproduced by a sequential ionization model. The final non-vanishing velocities are
due to the high intensity of the laser pulse which ionizes the atom so rapidly that
A(te1) 6= 0. The grid-like structure typical for a product wavefunction is seen, the
electron correlation being weak.

5.4.2 Ion Momentum Density

From the momentum pair density ρ(2+)(k1, k2, T ) of the electrons freed in double
ionization which is obtained from the solution of the time-dependent Schrödinger

equation we calculate the ion momentum density n
(2+)
Ion (k1, k2, T ) (5.6). For different

effective peak intensities the density of the ion momentum is depicted in Fig. 5.2.
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Figure 5.1: Contour plots of the momentum pair density ρ2+(k1, k2, T ) of
the electrons freed in double ionization. Results calculated from the time-
dependent Schrödinger equation are shown for different effective peak intensi-
ties of the λ=780 nm, N=3-cycle laser pulse.

It exhibits peaks at non-zero momenta which are typical for recollision processes
(cf. Sec. 5.3). For an infinitely long laser pulse of cycle-length T/N , Ĥ(t+ T/N) =
Ĥ(t) holds. This symmetry is broken in the case of few-cycle laser pulses, i.e., Ĥ(t+
T/N) 6= Ĥ(t). Hence, with respect to the dislodged electrons there is no spatial
inversion symmetry, leading to asymmetric ion momentum distributions [13, 60].
This effect is clearly seen in Fig. 5.2. For the three lowest intensities a process with
kIon ≥ 0 dominates while with increasing intensities processes with kIon ≤ 0 become
more likely. In addition, a central peak gets more and more pronounced, showing
that the relative probability of sequential double ionization increases. The fact that
the peak is not centered around kIon = 0 for I = 6.96 × 1015 W/cm2 is due to the
high intensity of the laser pulse as explained in Sec. 5.4.1.
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Figure 5.2: Ion momentum density of the model He2+
at time t = T for

different effective peak intensities of the λ=780 nm, N=3-cycle laser pulse.

5.5 Momentum Distributions from TDDFT

Determining momentum pair densities and ion momentum densities from a time-
dependent density functional approach faces two challenges, just the calculation
of ionization probabilities from the Kohn-Sham orbitals in Sec. 4.3. The first is to
find an approximation of the correlation-potential vc to reproduce the exact density
n(x, t) while the second is to assign a suitable functional of the density to the
respective observable. As both the ion momentum density and the momentum pair
density (via their probability interpretations, cf. Secs. 5.1 and 5.2) are observables,
the Runge-Gross theorem again assures that functionals of the density alone exist
(Sec. 2.1).

As pointed out in Chapter 3, a time-dependent density functional calculation
for the model Helium atom yields identical Kohn-Sham orbitals φ(x, t) for the two
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electrons. The momentum pair density of the electrons freed in double ioniza-
tion ρ(2+)(k1, k2, t) (5.4) is the Fourier transform of the correlated wavefunction
ψ(x1, x2, t). Furthermore, the ion momentum density (5.6) can be calculated from
the momentum pair density by an integration in momentum space. It is there-
fore straightforward to approximate the correlated wavefunction ψ(x1, x2, t) using
the Kohn-Sham orbitals and to calculate the momentum distributions as for the
Schrödinger solution.

5.5.1 Uncorrelated Functionals

Treating the Kohn-Sham orbitals as if they were one-electron wavefunctions yields a
product wavefunction φ(x1, t)φ(x2, t). This is the same assumption made to derive
the uncorrelated ionization probability functionals (4.4).

The Fourier transformed Kohn-Sham orbital for |x| > a, i.e., with the bound
states projected out (see Sec. 5.1) is

φ(+)(k, t) = (2π)−1/2
∫

dx f(x)φ(x, t) e−i k x , (5.7)

with f(x) = (1+e−c |x−a|)−1/2 the one-dimensional “smoothing” function equivalent
to Eq. (5.2). Using the product wavefunction to calculate the momentum pair
density (5.4) and the ion momentum density (5.6) gives the uncorrelated functional
for the momentum pair density of the electrons freed in double ionization

ρ(2+)(k1, k2, t) = 2 |φ(+)(k1, t)φ
(+)(k2, t)|2 (5.8)

and the uncorrelated functional for the ion momentum density of He2+

n
(2+)
Ion (kIon, t) =

∫
dk |φ(+)(−kIon− k, t)φ(+)(k, t)|2 . (5.9)

Equations (5.8) and (5.9) are not functionals of the density alone but due to the
Fourier transformation of the Kohn-Sham orbital they are dependent on the density
and on the phase of the Kohn-Sham orbital. This is in contrast to the uncorrelated
ionization probability functionals (4.4) derived using the same (product wavefunc-
tion) assumption which are functionals only of the density.

The momentum pair density at t = T as calculated from the uncorrelated func-
tional (5.8) using the exact Kohn-Sham orbital is depicted in Fig. 5.3 for different
intensities of the λ=780nm, N=3-cycle laser pulse. Comparison with Fig. 5.1, the
momentum pair density calculated from the correlated Schrödinger wavefunction
ψ(x1, x2, T ) using Eq. (5.4), confirms that only for the highest intensity a product
wavefunction approach is feasible. For lower intensities the uncorrelated functional
for the momentum pair density does not exhibit the typical “butterfly”-shaped cor-
relation structures of the Schrödinger solution but instead the grid-like structure
typical for a product wavefunction.

For the same system we calculate from Eq. (5.9) the ion momentum density
using the exact Kohn-Sham orbital. In Fig. 5.4 the He2+

ion momentum density is
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Figure 5.3: Contour plots of the momentum pair density of the electrons freed
in double ionization at time t = T as calculated from the uncorrelated func-
tional (5.8) using the exact Kohn-Sham orbital. Results for different effective
peak intensities of the λ=780 nm, N=3-cycle laser pulse are shown.

compared to the results from the Schrödinger equation, which are scaled to enable
the comparison of qualitative features. The different values of the integrals over the
ion momentum density are due to the different double ionization probabilities as

can be seen from
∫

dkIon n
(2+)
Ion (kIon, t) ' P 2+ (cf. Eq. (5.3)) which were discussed for

the product wavefunction approach in Sec. 4.3.1. Apart from the highest intensity
the density is centered around a central peak at kIon ≈ 0, exhibiting only slightly
positive values. This is evidence that correlations, which are not included in the un-
correlated functionals, are responsible for the distinct peaks of the ion momentum
density at non-zero momenta. This result is consistent with the classical consider-
ation (Sec. 5.3) and the analysis of the results of the time-dependent Schrödinger
equation (Sec. 5.4.2) which attribute the peaks at kIon 6= 0 to electron rescatter-
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Figure 5.4: Ion momentum density of the model He2+
after interaction with

the λ = 780 nm, N = 3-cycle laser pulse for different effective peak intensi-
ties. The density calculated using the exact Kohn-Sham orbital in the uncorre-
lated functional (EKSO) is compared to results from the Schrödinger solution
(TDSE).

ing, i.e., to an interaction between the electrons. For the highest intensity shown
in Fig. 5.4 sequential double ionization becomes dominant (cf. Sec. 5.4.2), so that
the description using the exact Kohn-Sham orbital in the uncorrelated functional
reproduces the ion momentum density well.

5.5.2 Comparison of Correlation Potentials

The uncorrelated functionals can be used as a measure for the quality of different
approximations of the correlation potential vc in the time-dependent Kohn-Sham
equations, just as in the corresponding Sec. 4.3.2 for the ionization probability func-
tionals. As it depends only on the orbitals and can be compared straightforwardly
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Figure 5.5: Ion momentum densities of He2+
at t = T as calculated using

BW05 and LK05 orbitals in the uncorrelated functional compared to results
using the exact Kohn-Sham orbital (EKSO). Results for different effective peak
intensities of the λ=780 nm, N=3-cycle laser pulse are shown.

we evaluate the uncorrelated functional for the ion momentum density (5.9). In
contrast to the functionals for the ionization probabilities (4.4) it depends on the
phase of the orbital as well.

As discussed in Sec. 5.5.1 the integral over the ion momentum density will dif-
fer for different orbitals according to the double ionization probabilities for the
respective intensity of the laser pulse (cf. Sec. 4.3.2). We will therefore restrict
ourselves to the qualitative differences in the ion momentum distributions which
(as shown in Sec. 5.4.2) reveal the process responsible for double ionization. The
ion momentum densities after interaction with the λ= 780nm, N = 3-cycle laser
pulse calculated according to Eqs. (5.9) are depicted in Fig. 5.5. In addition to the
results obtained from the exact Kohn-Sham orbital (which is identical to the or-
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bital a time-dependent Kohn-Sham equation with the exact vc would yield) the ion
momentum densities acquired from calculations with vLK05

c (3.11) and vBW05
c (3.12)

are shown.
The results for vc = 0 (TDHF) are not depicted as they are similar to the

LK05 results, agreeing only slightly better with the EKSO results at the medium
intensities shown in Fig. 5.5. Indeed, apart from the highest intensity all approxi-
mations of vc yield uncorrelated ion momentum densities which are close the EKSO
results (for the general deficiencies of the uncorrelated functional see the previous
Sec. 5.5.1). Only at the highest intensity the BW05 approximation yields a con-
siderably better agreement than the LK05 result which exhibits a single peak at
kIon ≥ 0 and not as the EKSO and BW05 solutions at kIon ≤ 0. We attribute this to
the fact that the BW05 potential, which uses vhxc(t) = vhx(t0)Θ(N(t) − 1) should
be better suited to describe purely sequential ionization, as the electron-electron
interaction changes from the groundstate interaction to zero when the first electron
leaves the atom. In addition, it does not include the nonlinear “feedback” of the
density to vhx inherent in the time-dependent vhx(t) used in the LK05 approxima-
tion. These results are thus in agreement with the findings of Sec. 5.4.2 that at
I = 6.96 × 1015 W/cm2 sequential double ionization dominates.

Therefore we can conclude that (except for sequential processes) the approxi-
mations of vc are of comparable quality with respect to the ion momentum densities
they yield. Due to the qualitative agreement with results for the exact Kohn-Sham
orbital, there is no conclusive evidence that essential physical processes are not
included in these approximations.

5.5.3 Towards Correlated Functionals

The uncorrelated functionals of Sec. 5.5.1 were shown to be insufficient to repro-
duce the results for the momentum pair density of the electrons freed in double
ionization and for the ion momentum density of the solution of the time-dependent
Schrödinger equation. Therefore we follow a route similar to the one employed
to obtain the correlated ionization probability functionals in Sec. 4.3.3 in order to
develop correlated functionals for the momentum distributions.

In polar representation the solution of the time-dependent Schrödinger equation
is written as

ψ(x1, x2, t) =
√
ρ(x1, x2, t)/ 2 ei ϕ(x1,x2,t) (5.10)

and the Kohn-Sham orbital as

φ(x, t) =
√
n(x, t)/ 2 eiϑ(x,t) . (5.11)

We then define a time-dependent complex exchange-correlation function

κ(x1, x2, t) =
ψ(x1, x2, t)√

2 φ(x1, t)φ(x2, t)

=
√
gxc(x1, x2, t) ei [ϕ(x1,x2,t)−ϑ(x1,t)−ϑ(x2,t)] . (5.12)
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The exchange-correlation function is given by (cf. Sec. 4.3.3) gxc(x1, x2, t) =
ρ(x1, x2, t)/n(x1, t)n(x2, t) and thus |κ(x1, x2, t)|2 = gxc(x1, x2, t). Note that while
gxc is an observable and thus a functional only of the density exists, κ is not an
observable. Using Eq. (5.12) to express the correlated wavefunction ψ(x1, x2, t) in
terms of the Kohn-Sham orbitals and the complex exchange-correlation function,
Eq. (5.4) gives the correlated functional for the momentum pair density of the elec-
trons freed in double ionization

ρ(2+)(k1, k2, t) = π−2

∣∣∣∣
∫

dx1

∫
dx2 φ

(+)(x1, t)φ
(+)(x2, t)

×κ(x1, x2, t) e−i (k1 x1+k2 x2)
∣∣∣
2
, (5.13)

with φ(+)(x, t) = f(x)φ(x, t). The correlated ion momentum density is calculated
by using the correlated momentum pair density in Eq. (5.6). We thus have exact
momentum distribution functionals which depend only on the complex exchange-
correlation function κ and the Kohn-Sham orbital.

The complex exchange-correlation function κ in turn depends on the pair den-
sity and the phase of the Schrödinger solution ψ(x1, x2, t). In order to derive
momentum space properties for more complex atoms than Helium from the Kohn-
Sham orbitals directly through expressions like Eq. (5.13) it is therefore inevitable
to approximate κ. However this is challenging since unlike for the ionization prob-
abilities (cf. Sec. 4.3.3) due to the integrals from the Fourier transformation in
Eq. (5.13) the complex exchange-correlation function has to be approximated for
all points in A(He2+

) and not just for the bound electrons in A(He) (cf. Sec. 4.1).

5.5.4 Product Phase Approximation

The necessary approximation of the complex exchange-correlation function κ (5.12)
consists of approximating gxc(x1, x2, t) and the phase-difference ϕ(x1, x2, t) −
ϑ(x1, t) − ϑ(x2, t).

Addressing the second part, the easiest approximation is to assume that the
difference of the sum of the phases of the Kohn-Sham orbitals and the phase of
the correlated wavefunction can be neglected when calculating momentum distri-
butions, i.e., we set

ϕ(x1, x2, t) = ϑ(x1, t) + ϑ(x2, t). (5.14)

Since the phase ϑ(x, t) can be constructed from ψ(x1, x2, t) as the phase of the
exact Kohn-Sham orbital (cf. Eqs. (3.17)) we denote this approach as the “product
phase” approximation (PP), which yields

κPP(x1, x2, t) '
√
gxc(x1, x2, t) . (5.15)

It is noteworthy that with the knowledge of the exact κPP it is possible to calcu-
late the exact double ionization probabilities from the exact Kohn-Sham orbital
(cf. Sec. 4.3.3).
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Figure 5.6: Ion momentum density of He2+
calculated from the correlated

functionals in the product phase approximation using the exact Kohn-Sham or-
bital (EKSO). Results for different effective peak intensities of the λ=780 nm,
N = 3-cycle laser pulse are compared to results obtained from the time-
dependent Schrödinger equation.

We calculate the ion momentum density using Eq. (5.15) in Eq. (5.13) and in
Eq. (5.6). Employing the exact Kohn-Sham orbital, the ion momentum densities
shown in Fig. 5.6 for different intensities of the λ = 780nm, N = 3-cycle laser
pulse are obtained. For comparison of the qualitative features the results from
the Schrödinger solution are scaled, although the integrals over the ion momen-
tum densities are equal in both cases (cf. discussion in Sec. 5.5.1) since the product
phase approximation returns the exact double ionization probabilities. A gener-
ally good qualitative agreement with the Schrödinger solution is acquired. The
asymmetric structure and the distinct peaks are reproduced. For intensities where
non-sequential double ionization is strongest the quantitative agreement is least
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Figure 5.7: Contour plots of the exchange-correlation function gxc(x1, x2, t)
for two effective peak intensities of the λ=780 nm, N =3-cycle laser pulse as
acquired from the solution of the time-dependent Schrödinger equation. For
clarity values larger than 10 are shown as 10.

convincing. Although the product phase approximation does not reproduce the ex-
act kIon values of the peaks it modifies the uncorrelated functionals in a way which
allows to deduce information about the underlying double ionization processes at
the different intensities. We can therefore conclude that the difference between the
phase of the correlated wavefunction and a product wavefunction is not as impor-
tant for reproducing the structure of the ion momentum density as is the correlation
given by gxc(x1, x2, t). This conclusion is verified by setting gxc = 1 in Eq. (5.12)
and using the exact phases in Eq. (5.13), which does not yield the peaks present in
the Schrödinger solution. Using LK05 orbitals in the product phase approximation
also reproduces distinct peaks while general agreement with the Schrödinger ion
momentum density is not as good as for the EKSO orbitals.

The contour plots of the momentum pair density of the electrons freed in double
ionization ρ(2+)(k1, k2, t) calculated from the correlated functional in the product
phase approximation using the exact Kohn-Sham orbital show a correlated struc-
ture. However, they clearly differ from the momentum pair densities acquired from
the Schrödinger solution (Fig. 5.1).

Using the product phase approximation we obtain momentum distributions
which yield insight into the double ionization processes. However, this still re-
quires knowledge of the exact gxc(x1, x2, t) at time t = T after the laser pulse,
i.e., of the exact pair density in real space. As pointed out above, approximat-
ing gxc(x1, x2, t) is a formidable task, as can also be seen from the highly corre-
lated structure in Fig. 5.7, where contour plots of the exchange-correlation function
gxc(x1, x2, T ) are shown for intensities where non-sequential double ionization dom-
inates. An adiabatic approximation (cf. Sec. 4.3.7) using the groundstate pair den-
sity is not feasible as effectively only the exchange-correlation function in A(He2+

)
is used in Eq. (5.13). An expansion for small inter-electron distances (cf. Sec. 4.3.6)
will not include the correlations for large |x1 − x2|, which are clearly present in
Fig. 5.7. Multiplying the complex exchange-correlation function by a damping
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function F (|x1 − x2|) with F → 0 for large |x1 − x2|, we verified that short-range
correlations in the final wavefunction alone will not reveal the characteristic peaks
in the ion momentum density.

It will therefore be of central importance to devise either a new way of approx-
imating gxc(x1, x2, t) or of treating correlations in momentum space, i.e., defining

g
(2+)
xc (k1, k2, t) = ρ(2+)(k1, k2, t)/n

(2+)(k1, t)n
(2+)(k2, t). Comparing Figs. 5.1 and

5.8 however, it is reasonable to assume that this approach will be facing the same
problems as the approximation of the exchange-correlation function in real space.
Hence, it seems worth studying the feasibility of approaches including memory
effects.





Chapter 6

Non-Sequential Double

Recombination

An atom interacting with a laser field can be ionized (cf. Chapters 4 and 5 for the
different ionization processes). As explained in the introduction (Chapter 1) the
dislodged electron can return to the ion at a later instant in time and recombine into
a bound state. In high-order harmonic generation (HOHG) it emits a single photon
of frequency Ω which is a multiple of the frequency of the laser field ω. We dis-
covered a related process, non-sequential double recombination (NSDR) [61]: Two
electrons are freed sequentially and recombine at the same time, emitting a single
photon. Using a classical model the cutoff-law of high-order harmonic generation is
reproduced and a new cutoff-law for non-sequential double recombination is found
(Sec. 6.1). In Sec. 6.2 the calculation of high-order harmonic spectra is introduced.
The solution of the time-dependent Schrödinger equation reveals a second plateau
in the harmonic spectra due to non-sequential double recombination. The results
corroborate the underlying process as derived from the classical model (Sec. 6.3).
As the functional of the density for high-order harmonic spectra is known, the exis-
tence of the second plateau provides a crucial test for the quality of densities from
time-dependent density functional calculations. We find that the approximations
of vc used in this work produce a second plateau. However, the plateau is too high
as compared to the first plateau, and it does not exhibit the cutoff associated with
non-sequential double recombination (Sec. 6.4).

6.1 Classical Model

Non-sequential double recombination is introduced using a classical model which
facilitates the interpretation of results from the time-dependent Schrödinger equa-
tion. The model is, due to its simplicity, also known as the “simple man’s theory”
(cf. the review Ref. [62]) and was also used as the basis for the classical consider-
ations concerning the ion momentum density in Sec. 5.3.

59
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We are interested in the dynamics of an electron in a linearly polarized laser
field A(t) = Â AE(t) sin (ω t) with a period of one laser cycle Tcyc = 2π/ω and
an envelope function AE(t). Describing the laser field in dipole approximation the
classical electron dynamics are confined to the direction of the polarization of the
laser field (cf. Secs. 3.1 and 3.2). An electron leaves the atom with zero initial
velocity at time te in the electric field E(t) = −∂tA(t). Subsequently the electron
is assumed to move freely in the laser field with the momentum

p(t) = A(t) −A(te) . (6.1)

The position is then found by integration as

x(t) = α(t) − α(te) −A(te) (t− te) , (6.2)

with α(t) =
∫ t dt′A(t′) the excursion of the free electron in the field. From Eq. (6.1)

the kinetic energy of the electron at time t follows as p2(t)/ 2.
If x(tr) = 0 for some time tr > te the free electron revisits the ion and recom-

bination ensuing the generation of high-order harmonic radiation is possible. The
energy of the emitted photon Ω is given by the sum of the kinetic energy of the
electron and the ionization potential

Ω =
1

2
p2(tr) + I(1)

p . (6.3)

The maximum photon energy is then found from maxtr{p2(tr)/ 2 + I(1)
p | x(tr) = 0}

and yields the well-known cutoff-law for the generation of high-order harmonics in
an infinitely long laser pulse (AE(t) = 1) [15]

Ωmax(1) = 3.17Up + I(1)
p (6.4)

with the ponderomotive potential Up = Â2/4.
In the lower part of Fig. 6.1 photon energies Ω as multiples of the laser frequency

ω are shown for an infinitely long laser pulse with Â = 3.359 interacting with a one-
dimensional Helium atom. It is found that the maximum energy (6.4) is emitted if
the electron recombines in the half-cycle of the laser pulse following its emission.

We extend this model by regarding two electrons moving freely and without
interaction (i.e., double ionization is considered to be sequential, cf. Sec. 5.3). They
are dislodged at times te1 and te2 with te1 < te2. The emission of the two electrons
has to take place in different half-cycles of the laser pulse. Otherwise the elec-
trons would follow similar classical trajectories, a scenario which due to Coulomb
repulsion makes recombination at the same time extremely unlikely. Due to the
same reasoning the second electron may not be freed exactly one half-cycle after
the first. Allowing for multiple returns, the condition for non-sequential double
recombination, i.e., simultaneous recombination of the electrons is x1(t

r) = 0 and

x2(t
r) = 0 with the corresponding energy of the single photon being emitted

Ω =
1

2
p2
1(t

r) +
1

2
p2
2(t

r) + I(1)
p + I(2)

p . (6.5)
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Figure 6.1: Energies of emitted photons in multiples of the laser frequency
for a selected time-interval of an infinitely long sin-pulse interacting with a
one-dimensional Helium atom. Only electrons emitted for 2 ≤ te/ Tcyc < 2.5
(blue), 2.5 ≤ te/ Tcyc < 3.0 (red) and 3.0 ≤ te/ Tcyc < 3.5 (black) are shown.
The highest energies of photons emitted in non-sequential double recombination
are depicted in orange, where the left peak follows from the sum of the blue
and red curves (electrons emitted in subsequent half-cycles) and the right peak
of the blue and black curves (electrons emitted with one half-cycle difference).

Searching again for the maximum photon energy we find

Ωmax(2) = 5.55Up + I(1)
p + I(2)

p , (6.6)

a new cutoff-law for non-sequential double recombination. This is the highest
energy possible when electrons are freed in next but one half cycles. If the electrons
leave the atom in subsequent half-cycles the maximum energy is only Ωmax(2′) =
4.70Up + I(1)

p + I(2)
p . The cutoffs correspond to the maximum values of the peaks

in the upper part of Fig. 6.1 for the infinitely long laser pulse.

For few-cycle pulses the cutoff laws (6.4), (6.6) yield different numerical pref-
actors as the peak value of A(t) is not equal to Â and differs throughout the pulse
due to the influence of the envelope function AE(t) (Sec. 3.1).

6.2 Calculation of High-Order Harmonic Spectra

It is known that the single atom-response is a basic ingredient for comparison with
experimental high-order harmonic spectra [63]. We will therefore consider only the
radiation emitted by a single atom. Classically, the power of the radiation emitted
by a dipole is proportional to the square of the acceleration P (t) ∝ |d2

t x(t)|2. In
a semi-classical approach we replace x by the dipole operator and write 〈a(t)〉 =
d2

t 〈
∑2

i=1 xi〉=
∑2

i=1 d2
t 〈xi〉. A fully quantum mechanical treatment leads in the case

of a dilute gas to the same expression and confirms the validity of treating only
a single atom [64]. From Ehrenfest’s theorem follows with the kinetic momentum
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operator p̂kin
i = −i ∂xi

+A(t) and the Hamiltonian of the model Helium atom (3.5)

d2
t 〈xi〉 = dt 〈−i ∂xi

+A(t)〉 = 〈i [ Ĥ(x1, x2, t),−i ∂xi
] + ∂tA(t)〉

= 〈−∂xi
[V (x1) + V (x2) +W (|x1 − x2|)] − E(t)〉 . (6.7)

In the last step we used E(t) = −∂tA(t). With V (x) given by Eq. (3.3) we have
〈∂x1 V (x1)〉=〈∂x2 V (x2)〉 and ∂x1 W (|x1−x2|)=−∂x2 W (|x1−x2|). Hence, 〈a(t)〉=
2 〈−∂xV (x) − E(t)〉 which we can write as [65]

〈a(t)〉 =

∫
dxn(x, t)

[
x

(x2 + εen)3/2
− E(t)

]
, (6.8)

with the density of the system n(x, t)=2
∫

dx2 |ψ(x1, x2, t)|2 (3.13). The power is
then P (t) ∝ |〈a(t)〉|2. As we are interested in an analysis of the spectrum of the
emitted radiation we introduce the Fourier transform of 〈a(t)〉, the complex valued
acceleration as a function of the frequency of the emitted photons Ω

a(Ω) =
(√

2π
)−1

∫
dt 〈a(t)〉 e−i Ω t . (6.9)

From the total emitted energy E =
∫

dt P (t) =
∫

dΩ ε(Ω) we see that for the energy
emitted into a spectral interval [Ω,Ω + dΩ],

ε(Ω) dΩ ∝ |a(Ω)|2 dΩ , (6.10)

so that |a(Ω)|2 yields information about the spectral distribution of the emitted
radiation. The selection rule for the emission of harmonic radiation for a single
atom in an infinite pulse is that only odd multiples of the laser frequency ω are
emitted. This follows from the symmetry of the respective matrix element.

Inverse Fourier transformation of the acceleration as a function of the frequency
a(Ω) (6.9) simply reproduces the acceleration as a function of time t. We multiply
the acceleration by a window function

W (Ω′; Ω) =
1

2

[
1 + cos

(
2π

Ω − Ω′

w

)
Θ

(
w

2
− |Ω − Ω′|

)]
, (6.11)

which “selects” via the stepfunction a frequency range of total width w = 40ω cen-
tered around Ω. Fourier transforming back to the time-domain yields the emission
times for the harmonics of the respective frequency

a(Ω, t) =
(√

2π
)−1

∫
dΩ′ a(Ω′)W (Ω′,Ω) ei Ω′ t . (6.12)

As the emission times of the harmonic radiation correspond to the recombination
times of the electrons, |a(Ω, t)|2 allows to retrieve the classical return energies as a
function of time (the corresponding energies of the emitted photons are shown in
Fig. 6.1) from a quantum mechanical calculation.
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In actual calculations we implement Eqs. (6.9) and (6.12) by a fast Fourier
transformation algorithm using the discrete time-series 〈a(i∆t)〉 with 0≤ i∆t≤T
and i = 0, . . . , Nt. For the Fourier transformation the data set is multiplied by
a Hanning window W (t) = [1 − cos (2π t/T )] / 2 to reduce aliasing effects. The
prefactors in the fast Fourier transformation are chosen to ensure that Parseval’s
theorem holds with respect to integrations approximated by a Riemann sum.

6.3 High-Order Harmonic Spectra from the TDSE

In order to verify the existence of non-sequential double recombination we solve
the time-dependent Schrödinger equation of the model Helium atom (Sec. 3.3) for
different effective peak intensities of the λ= 780nm, N = 6 cycle laser pulse. As
described in the previous Sec. 6.2 we determine |a(Ω)|2 (6.9) and |a(Ω, t)|2 (6.12).

To complement our analysis, a single-active electron calculation using the model
introduced in Sec. 3.7 is performed. As one electron is assumed to remain in the
groundstate we consider only the active electron and modify Eq. (6.9) accordingly.
As can be seen from Eqs. (3.5) and (3.18) solving the time-dependent Schrödinger
equation with the electron-electron interaction set to zero (W (|x1 − x2|) = 0)
corresponds to solving two model He

+
ions. In this section we used this approach

to obtain the results for He+.

In Fig. 6.2 spectra of the emitted radiation as functions of multiples of the
laser frequency are shown for different intensities of the laser pulse. In the results
obtained from the time-dependent Schrödinger equation the nearly constant plateau
typical of high-order harmonic generation is clearly discernible, including the cutoff
at 3.17Up + I(1)

p which is indicated by arrow 1. The height of the first plateau is
|a(Ω)|2 ≈ (10−3 − 10−4). In addition, a second plateau at higher multiples of the
laser frequency Ω/ω can be readily identified with a height of (10−11−10−12) of the
first plateau. An estimate of the efficiency of non-sequential double recombination
is given by the product of the heights of the He single-active electron and the He+

plateaus. From Fig. 6.2 we hence deduce that the Coulomb interaction between the
electrons does not reduce the height of the second plateau any further. The cutoff
of the second plateau is in excellent agreement with the value expected from the
classical model (Sec. 6.1) of 5.55Up + I(1)

p + I(2)
p (arrow 4). The arrow 3 in Fig. 6.2

indicates the value 4.70Up + I(1)
p + I(2)

p . For values of Ω/ω beyond arrow 3 only two
classical (and corresponding quantum) trajectories contribute (cf. Fig. 6.3). This
leads to a less jagged spectrum, an effect best seen for the two highest intensities.

The single-active electron results reproduce the first plateau including the cutoff
(arrow 1) very precisely. This confirms the well-established view that high-order
harmonic generation (for the first plateau) is essentially a single electron effect.
Furthermore, the fact that no second plateau is produced furthers the view of non-
sequential double recombination as a distinct two-electron process. This is also
underlined by the He

+
spectra, where no second plateau is observed. As they were

calculated from the time-dependent Schrödinger equation for the model Helium
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Figure 6.2: High-order harmonic spectra of the model Helium atom calculated
from the time-dependent Schrödinger equation (TDSE) compared to the single-
active electron (SAE) and the He

+

spectra. The λ=780 nm, N=6-cycle laser
pulse was used with different effective peak intensities.

atom with W (|x1 − x2|) = 0 (cf. above), we have thus confirmed that electron-
electron interaction is necessary to produce the second plateau. The first plateau
for He+ is markedly lower than for Helium due to the higher ionization potential.
The He+ cutoff 3.17Up + I(2)

p is indicated by arrow 2. We attribute the enhanced
values for |a(Ω)|2 at Ω/ω ≈ 20 to bound-bound transitions in He+.

For the four intensities in Fig. 6.2 the corresponding contour plots of |a(Ω, t)|2
(6.12) are depicted in Fig. 6.3. In addition, the photon energies of the solutions
of the classical model for the N = 6 cycle pulse are superimposed as white lines
(note that the photon energies depicted in Fig. 6.1 are for an infinitely long pulse).
The highest classically possible photon energies of non-sequential double recom-
bination in the time-interval of interest are drawn in black. The agreement with
the frequency-time analysis of the time-dependent Schrödinger equation is further
evidence that the second plateau is caused by non-sequential double recombination.

The efficiency of high-order harmonic generation in the range of the first plateau
has been shown to be overestimated by a one-dimensional as compared to a three-
dimensional calculation [66]. The spreading of the wavepacket of the free electrons
depends on the dimensionality of the system d. Calculations with the strong-field
approximation in full dimensionality confirm that the height of the first plateau
scales with ωd while the second plateau scales with ω2d, where ω is the frequency
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Figure 6.3: Frequency-time analysis of the emission of high-order harmonic
radiation as calculated from the solution of the time-dependent Schrödinger
equation. Contour plots of |a(Ω, t)|2 are compared to photon energies from
the classical model (cf. Sec. 6.1) which are drawn in white and black for a
selected time-interval of the λ=780 nm, N =6-cycle laser pulse. Calculations
for different effective peak intensities are shown.

of the laser [61]. The height of the second plateau will therefore be markedly
lower in a real three dimensional system. The efficiency of the second plateau as
compared to the first plateau thus renders an experimental observation of non-
sequential double recombination difficult. From the frequency-time analysis and
the classical model we know, however, which ionization times of the electrons will
lead to non-sequential double recombination. It is therefore reasonable to assume
that controlling the ionization times will enhance the height of the second plateau
relative to the height of the first plateau.

Ionization of the atom at specific times is achieved by using laser pulses with
ultraviolet wavelengths (see, e.g., Ref. [67]). We use two laser pulses i ∈ {1, 2}
centered around the desired ionization time ti with

Ai(t) = Âi e−Γ (t−ti)
2

sin (ωi (t− ti)) , (6.13)

for 0 ≤ t ≤ T , where T is the length of the original laser pulse. A Gaussian envelope
function is chosen to minimize the influence of the ultraviolet pulses on the Fourier
transformation (using a cos2-envelope produces a signal partly masking the second
plateau as would markedly shorter pulses). The parameter Γ = 0.4 ensures that
both pulses have a “full width at half maximum” (FWHM) comparable to respective
three- and six-cycle cos2-pulses. In order for the electrons to leave the atom with
vanishing initial velocity (as in the classical calculations of Sec. 6.1), i.e., zero initial
kinetic energy, the frequencies are chosen corresponding to the ionization potentials
ω1 = I(1)

p = 0.904 and ω2 = I(2)
p = 2.0. As the probability for tunnel ionization
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Figure 6.4: High-order harmonic spectrum calculated from the time-
dependent Schrödinger equation of the model Helium atom. Results of the
interaction with the λ=780 nm, N=6-cycle laser pulse (TDSE) are compared
to additional exposure to combinations of two ultraviolet laser pulses with (a)
t1 = 2.01Tcyc and (b) t1 = 1.52Tcyc.

is proportional to the intensity of the laser field which in turn is proportional to
Âi/ωi we use Â2 = ω1 Â1/ω2. For the results presented here we choose Â1 = 0.35.
The ultraviolet pulses are added to the vector potential A(t) of the λ = 780nm,
N = 6-cycle laser pulse in the expression for the external potential V (x, t) (3.6):
A(t) → A(t) +A1(t) +A2(t).

With Tcyc = 2π/ω we employ two different combinations of two ultraviolet
pulses with ionization times of (a) t1 = 2.01Tcyc as well as (b) t1 = 1.52Tcyc and
t2 = 2.54Tcyc. This initiates “trajectories” contributing to non-sequential double
recombination up to the cutoffs indicated by arrows 3 and 4, respectively. Compar-
ing the resulting spectrum for a selected intensity in Fig. 6.4 with the corresponding
spectrum without the ultraviolet laser pulses, we observe that the general struc-
ture of the first plateau is unchanged. The only marked differences are found at
ω1/ω = 15.5 and at ω2/ω = 34.2 which can thus be identified as absorption of
two ultraviolet photons and recombination. Furthermore, the He

+
cutoff is more

pronounced as the enhanced ionization by the first ultraviolet pulse increases the
probability to produce He

+
which will subsequently contribute to high-order har-

monic generation. The second plateau meanwhile is enhanced by a factor of about
103. As expected from the classical prediction the pulse combination (a) magnifies
only the plateau up to 4.70Up + I(1)

p + I(2)
p (arrow 3). Only recombination of elec-

trons leaving the atom in consecutive half-cycles of the laser pulse is enhanced. If
instead for pulse combination (b) electrons are preferentially emitted in next but
one half-cycles, the whole second plateau up to 5.55Up + I(1)

p + I(2)
p (arrow 4) is am-

plified, another clear indication that non-sequential double recombination proceeds
as explained by the classical model.
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Figure 6.5: High-order harmonic spectra of the model Helium atom calculated
from the densities produced by the BW05 and LK05 approximations of vc
compared to the results of the time-dependent Schrödinger equation. Spectra
for different effective peak intensities of the λ=780 nm, N=6-cycle laser pulse
are shown.

6.4 High-Order Harmonic Spectra from TDDFT

In Sec. 6.2 we obtained an expression for the calculation of the expectation value
of the acceleration 〈a(t)〉 (6.8) which depends on the density only. 〈a(t)〉 allows
to calculate via Eq. (6.9) the high-order harmonic spectrum. We thus have an
observable were the functional of the density is known exactly (as opposed to the
ionization probabilities in Sec. 4.3 and the momentum distributions in Sec. 5.5). Po-
tential disagreements between time-dependent density functional calculations and
the exact results are thus solely due to differences in the densities. The high-order
harmonic spectra now offer the possibility to compare the results of |a(Ω)|2 using
densities calculated with different vc directly to the results of the time-dependent
Schrödinger equation presented in Sec. 6.3. We observe that as the density of the
exact Kohn-Sham orbital is by construction equal to the density of the Schrödinger
solution, it yields exactly the same spectra.

In Fig. 6.5 we compare values of |a(Ω)|2 for the LK05 (3.11) and BW05 (3.12)
approximations of vc to the high-order harmonic spectra calculated from the so-
lution of the time-dependent Schrödinger equation. For both approximations the
agreement with the exact result is very good in the range of the first plateau. The
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Figure 6.6: Frequency-time analysis of the emission of high-order harmonic
radiation as calculated from a time-dependent density functional calculation
with vLK05

c . Contour plots of |a(Ω, t)|2 are compared to photon energies from
the classical model (cf. Sec. 6.1) which are drawn in white and black for a
selected time-interval of the λ=780 nm, N =6-cycle laser pulse. Calculations
for different effective peak intensities are shown.

high-order harmonic cutoff (6.4) indicated by arrow 1 is precisely reproduced and
the structure of the spectrum is even quantitatively very similar to the Schrödinger
results. For vBW05

c the number of bound electrons N(t) becomes smaller than one
during the interaction with the laser pulse at the highest depicted intensity. Sub-
sequently vBW05

hxc (t) = vhx(t0) → vBW05
hxc (t) = 0 (cf. Eq. (3.12)), inducing a sudden

change in the ionization potential enabling “transitions” of the remaining bound
electron. This behavior leads to resonances at Ω/ω ≈ 20 as in the case of the He

+

ion (cf. Fig. 6.2). Results for a calculation with vc = 0 (TDHF) are quantitatively
very similar to the LK05 results and therefore not presented here.

In the range of the second plateau we do not observe agreement with the time-
dependent Schrödinger solution. Using vLK05

c a second plateau is produced which
is, however, by a factor of about 105 too high. Additionally, the second cutoff is
not located at the position for the non-sequential double recombination cutoff pre-
dicted by the classical model (6.6) and verified by the Schrödinger solution. Instead
it is located at 2 (3.17Up + I(1)

p ), i.e., two times the value of the cutoff of the first
plateau. In a calculation with vc = 0 (TDHF) we observe a similar behavior. This
evidences that the dominant effect contributing to the second plateau in a calcula-
tion using vLK05

c and vc = 0 is not non-sequential double recombination. Instead we
attribute this effect to the nonlinearity included in the Hartree-exchange potential
vhx(x, t) (3.8) as the density is used to calculate the effective potential. Evoking
a physical picture we can think of the electron oscillating and emitting high-order
harmonic radiation. As this motion is fed back into the potential in which the
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electron moves, multiples of the frequencies emitted in the first plateau are also
emitted. This view is confirmed by the existence of a third plateau with a cutoff
of about 3 (3.17Up + I(1)

p ). In the case of the BW05 potential we do not observe
a second plateau for the three lowest intensities shown in Fig. 6.5. As the num-
ber of bound electrons N(t) (3.10) does not fall below one for these intensities the
potential of the BW05 calculation is the groundstate Hartree-exchange potential
vBW05
hxc (t) = vhx(t0) (cf. Eq. (3.12)). Since no dynamic electron-electron interactions

are included in vBW05
c the non-existence of a plateau due to non-sequential dou-

ble recombination was expected. In this intensity regime the system corresponds
to two single-active electron equations for the respective electrons, explaining the
similarity to the single-active electron results presented in Sec. 6.3. For the highest
intensity in Fig. 6.5 the number of bound electrons drops below one during the in-
teraction with the laser pulse and consequently vBW05

hxc (t) = 0. This behavior induces
a “noise” level which does not exhibit any further cutoffs about 108 times higher
than the second plateau from the Schrödinger solution.

A frequency-time analysis supports the interpretation of the second plateau in
approaches using the vhxc(t) potentials based on the nonlinear vhx(t) (3.8) as a
replication of the first plateau. Calculating |a(Ω, t)|2 (6.12) for nLK05 and the inten-
sities of Fig. 6.5 we attain the contour plots in Fig. 6.6. At the times when |a(Ω, t)|2
is large in the energy range of the first plateau, it is also enhanced in the range of
the second plateau, i.e., whenever photons are emitted with a frequency Ω, then in
a calculation with the vLK05

c potential photons with 2Ω are emitted as well. This
should be compared with Fig. 6.3 for the solution of the time-dependent Schrödinger
equation where, for example, no enhancement in the range of the second plateau is
observed for 2.0 ≤ t/ Tcyc ≤ 2.5. For the first plateau the time-dependent density
functional calculation with vLK05

c actually yields precisely the classically predicted
energies though. We hence conclude that refined approximations of vc will have
to address the effects induced by the Hartree-exchange potential, with the second
plateau of non-sequential double recombination serving as a sensitive benchmark
of the quality of the approximation.





Chapter 7

Summary

A model Helium atom interacting with few-cycle laser pulses was studied using
the time-dependent Schrödinger equation and time-dependent density functional
theory.

From the solution of the Schrödinger equation we reproduced the experimentally
observed enhanced double ionization probabilities due to a non-sequential ionization
process with strong electron-electron interactions. The momentum distributions of
the electrons as well as of the ion yielded valuable information about how double
ionization proceeds at different intensities of the laser pulse. An electron which has
left the atom can recombine at later times, emitting high-order harmonic radiation.
We found a complementary process, non-sequential double recombination: Two
electrons leave the atom sequentially and, through mutual interaction, recombine
together, emitting a single photon.

Time-dependent density functional theory allows to describe the system by
time-dependent Kohn-Sham equations for non-interacting electrons in an effective
potential. In principle, this system can produce the exact time-dependent density
and all observables through density functionals. In actual calculations two chal-
lenges are met. The exchange and correlation parts of the effective potential have to
be approximated. In addition, for many observables functionals of the density are
not known. In a system with strong electron-electron interactions these challenges
are most pronounced so that ionization in the model Helium atom is especially
suited to study them.

The results of the time-dependent Schrödinger equation were used as a reference
for time-dependent density functional calculations. From the Schrödinger solution
we constructed an exact Kohn-Sham orbital which would result from solving the
Kohn-Sham equations with the exact effective potential.

We showed that for calculating ionization probabilities the knowledge of the
exact density does not suffice. An accurate approximation of the functional for
the observable is of utmost importance. An uncorrelated functional assuming the
product of the Kohn-Sham orbitals to describe the wavefunction of the system was
shown to be inadequate. We presented an appropriate functional which takes into

71



72 Chapter 7. Summary

account electron correlations. It is based on the pair density of the electrons. This
correlated functional can be formulated as the sum of the uncorrelated function-
als and a correction term due to electron correlations. Employing a well-known
groundstate correlation function to approximate the functional did not improve
upon the uncorrelated approach. We therefore introduced an adiabatic approxi-
mation. This enabled us to reproduce the double ionization probabilities of the
solution of the time-dependent Schrödinger equation, especially the characteristic
“knee structure”, as a function of the intensity of the laser pulse. Making use of the
dependence of the correction term on the number of bound electrons, an alternative
approach using a fit function was presented. This approximation also enabled us
to reproduce the double ionization probabilities.

An uncorrelated functional based on a product of the Kohn-Sham orbitals is
also unable to reproduce the qualitative features of the momentum density of He2+

after the laser pulse. A functional of the Kohn-Sham orbitals was devised which
includes correlation via the correlation function. It was shown that the phase of the
correlated wavefunction is of minor importance compared to electron correlations.
We demonstrated that for the exact correlation function this functional gives the
correct qualitative features of the ion momentum density.

The exact functional of the density for high-order harmonic generation and
thus for the radiation emitted in non-sequential double recombination is known.
Hence, time-dependent density functional theory yields high-order harmonic spec-
tra agreeing closely with the results from the time-dependent Schrödinger equation.
However, the commonly used exchange-correlation potentials do not reproduce the
typical features of non-sequential double recombination in the spectrum of the
emitted radiation.

We evaluated the uncorrelated functionals for the ionization probabilities and
the ion momentum density as well as the functional for the high-order harmonic
spectra. Comparing to results obtained for the exact Kohn-Sham orbital then al-
lowed us to assess the quality of different approximations of the correlation poten-
tial, as the exchange potential is known exactly for the Helium atom. We concluded
that it is vital for the correlation potential to include a discontinuity at integer
numbers of bound electrons. Furthermore, it needs to ensure that the ionization
potential is held approximately constant until an electron has left the atom. The
nonlinear “feedback” inherent in the effective potential through the Hartree poten-
tial was shown to lead to effects not present in the exact Kohn-Sham orbital and
hence needs to be at least partly compensated by the exact correlation potential.

We have thus made significant progress in tackling a system generally regarded
as showing the inadequacy of current implementations of time-dependent density
functional theory. Future work will have to focus on further improving the approx-
imation of the exchange-correlation potential and especially on investigating the
role of electron correlations in the approximation of functionals for observables.



Appendix A

Numerical Implementation

The numerical implementation of the time-dependent Schrödinger and Kohn-Sham
equations (Secs. A.1, A.2) for the model Helium atom (Chapter 3) are explained.
We discretize both equations in Secs.A.3 and A.4 on a numerical grid. The approx-
imation of the time-propagator is then highlighted (Secs. A.5, A.6) and it is shown
how special care in the approximation can significantly improve the accuracy of
numerical results. The groundstate of the system can be obtained by using the
time-propagator (Sec. A.7). Due to the finite size of the numerical grid we have to
make use of absorbing boundary conditions (Sec. A.8). In Sec. A.9 the parameters
of the calculations used to acquire the numerical results in this work are detailed.

For notational clarity we will denote the electrons of the system with k = 1, 2
in this Appendix.

A.1 Time-Dependent Schrödinger Equation

The one-dimensional two-electron time-dependent Schrödinger equation (TDSE)
for the model Helium atom is

i ∂t ψ(x1, x2, t) = Ĥ(x1, x2, t)ψ(x1, x2, t) . (A.1)

To discuss the numerical implementation the Hamiltonian in velocity gauge and
position space representation (3.5) is written in this chapter as

Ĥ(x1, x2, t) =
∑

k=1,2

(
T̂ k + Ĥk

L + V k
)

+W 12 . (A.2)

The operators for the kinetic energy T̂ k, the electron-laser interaction Ĥk
L, the

electron-nucleus interaction V k and the electron-electron interaction W 12 are given
by

T̂ k = −1

2
∂2

xk
,

Ĥk
L = −iA(t) ∂xk

,
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V k = V (xk) = − 2√
x2

k + εen
,

W 12 = W (|x1 − x2|) =
1√

(x1 − x2)2 + εee
. (A.3)

The dipole approximation for the laser field is used (cf. Sec. 3.1).

A.2 Time-Dependent Kohn-Sham Equation

In the model Helium atom both electrons are described by the same Kohn-Sham
orbital (cf. Sec. 3.4). Hence, the one-dimensional time-dependent Kohn-Sham equa-
tion (TDKSE) we have to solve is

i ∂t φ(x, t) = ĤKS(x, t)φ(x, t) . (A.4)

The Hamiltonian (3.7) is written analogously to the Schrödinger Hamiltonian (A.2)
as

ĤKS(x, t) = T̂ + ĤL + V + Vhxc (A.5)

in velocity gauge, using Eq. (A.3) with k = 1 and

Vhxc = vhx(x, t) + vc(x, t) =

∫
dx′

|φ(x′, t)|2√
(x− x′)2 + εKS

ee

+ vc(x, t) , (A.6)

the Hartree-exchange-correlation potential for the model Helium atom.

A.3 Discretization of the TDSE

In order to make the Schrödinger (A.1) and Kohn-Sham (A.4) equations numer-
ically accessible we describe the system on a numerical grid. Nx grid points in
each direction of the two-electron space are used with an equidistant spacing of ∆x
between grid points. The two-electron wavefunction ψ(x1, x2, t) in discretized form
is thus a matrix on the grid

(ψ)ij (t) = ψ (i∆x, j∆x, t) . (A.7)

with i, j = −Nx/2, . . . , Nx/2 − 1 and Nx even.
We will now discuss how the operators (A.3) are discretized on this grid. An

operator acting on x1 has to be applied successively for all values of x2, i.e., for all

j to the columns ~ψ
(j)
i = (ψ)ij . Correspondingly, an operator acting on x2 has to

be applied to the i rows ~ψ
(i)
j = (ψ)ij .

For the first spatial derivative in Ĥk
L a Simpson approximation is employed

∂

∂x
ψ ≈ M−1

1 ∆1
~ψ , (A.8)
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which is correct to fourth order in ∆x. The matrices are given by

M1 =
1

6




4 1
1 4 1

. . .

1 4



, ∆1 = 1

2∆x




0 1
−1 0 1

. . .

−1 0



. (A.9)

The second spatial derivative in T̂ k is approximated by a fourth-order Numerov
expression

∂2

∂x2
ψ ≈ −2M−1

2 ∆2
~ψ . (A.10)

The matrices are

M2 = −1

6




10 1
1 10 1

. . .

1 10



, ∆2 = 1

(∆x)2




−2 1
1 −2 1

. . .

1 −2



. (A.11)

In order for the time-propagation (see below) to be unitary, one has to ensure that
the Hamiltonian is hermitian, i.e. Ĥ = (Ĥ∗)T. Ĥk

L and T̂ k are hermitian if M−1
1 ∆1

is anti-hermitian and M−1
2 ∆2 is hermitian. It is easily calculated that replacing

the (1,1) and (Nx,Nx) elements in M1, 4 → 2+
√

3 and in ∆1, 0 →
√

3− 2 ensures
the anti-hermiticity of M−1

1 ∆1. M−1
2 ∆2 is already hermitian. The discretized

operators (A.3) of the Hamiltonian are thus

T̂k = M−1
2 ∆2 ,

Ĥk
L = −iA(t)M−1

1 ∆1 . (A.12)

Analogously, the electron-nucleus interaction is discretized as the diagonal ma-
trix

(Vk)ij = V (i∆x) δij . (A.13)

The electron-electron interaction depends on the position of both electrons and is
therefore written as the nondiagonal matrix

(W12)ij = W (|i∆x− j∆x|) . (A.14)

In the above formulas, k denotes the first or second electron. As pointed out
above, the matrices then act either on rows or columns of ψ. This is ensured when
writing the time-dependent Schrödinger equation in discretized form by inserting
δij ,

i ∂t (ψ)ij =
∑

i′j′

[
(T̂1)ii′ δjj′ + (V1)ii′ δjj′ + (Ĥ1

L)ii′ δjj′ + (T̂2)jj′ δii′

+(Ĥ2
L)jj′ δii′ + (V2)jj′ δii′ + (W12)ij δii′ δjj′

]
(ψ)i′j′ . (A.15)
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A.4 Discretization of the TDKSE

The Kohn-Sham equation (A.4) is discretized completely analogously to the
Schrödinger equation. Since we have only one orbital, this orbital is given by a
vector on a grid with Nx grid points

(φ)i(t) = φ(i∆x, t) , (A.16)

where i = −Nx/2, . . . , Nx/2− 1 and Nx even. The matrix representation of vhxc is

(Vhxc)ij = [vhx(i∆x, t) + vc(i∆x, t)] δij . (A.17)

With Eqs. (A.12), (A.13) and k = 1 the time-dependent Kohn-Sham equation
in matrix form then is

i ∂t (φ)i =
∑

i′

[
(T̂)ii′ + (ĤL)ii′ + (V)ii′ + (Vhxc)ii′

]
(φ)i′ (A.18)

A.5 Time-Propagation of the TDSE Wavefunction

A.5.1 Short-Time Propagator

Given an initial state ψ(x1, x2, t0), a solution of the time-dependent Schrödinger
equation (A.1) is given by

ψ(x1, x2, T ) = U(T, t0)ψ(x1, x2, t0) . (A.19)

U is the time propagator. Deducing the form of the time propagator from the
Schrödinger equation for infinitesimal timesteps dt and taking the limit dt → 0
(see, e.g., [59]) one has

U(T, t0) = T̂ e
−i
∫ T

t0
dt′ Ĥ(x1,x2,t′)

, (A.20)

where the time-ordering operator T̂ is used.

In our implementation we use Nt finite time-steps ∆t=(T − t0) /Nt. The time-
dependence of Ĥ and the effect of the time-ordering are negligible in the short
interval ∆t. Therefore the time propagator is approximated as

U (t, t0) ≈
Nt−1∏

i=0

U (ti + ∆t, ti) , (A.21)

with the short-time propagator

U (t+ ∆t, t) ≈ e−i∆t Ĥ(x1,x2,t) . (A.22)
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A.5.2 Approximation of the Short-Time Propagator

The short-time propagator (A.22) can only be applied to the wavefunction ψ by
simple multiplication if the Hamiltonian is diagonal. Diagonalizing the Hamiltonian
in every timestep is numerically demanding. Therefore, we make use of the Crank-
Nicolson approximation [68]

UCN (t+ ∆t, t) =

(
1 + i

∆t

2
Ĥ

)−1 (
1 − i

∆t

2
Ĥ

)
(A.23)

of the short-time propagator

U (t+ ∆t, t) = UCN (t+ ∆t, t) + O
[
(∆t)3

]
, (A.24)

where Ĥ = Ĥ(x1, x2, t). The order of the error follows from comparing the expan-
sion of the short-time propagator

U (t+ ∆t, t) = 1 − i∆t Ĥ − 1

2
(∆t)2 Ĥ2 + i

1

6
(∆t)3 Ĥ3 + . . . (A.25)

and the Crank-Nicolson short-time propagator

UCN (t+ ∆t, t) = 1 − i∆t Ĥ − 1

2
(∆t)2 Ĥ2 + i

1

4
(∆t)3 Ĥ3 + . . . . (A.26)

Unitarity of the time propagator is conserved in this approximation as can be seen
directly from Eq. (A.23). Since we already assumed our Hamiltonian to be non-
diagonal, UCN cannot be simply applied in the form given by Eq. (A.23). Instead,
it yields an implicit equation

(
1 + i

∆t

2
Ĥ

)
ψ (t+ ∆t) =

(
1 − i

∆t

2
Ĥ

)
ψ (t) (A.27)

which has to be solved for ψ (t+ ∆t).

A.5.3 Short-Time Propagator Splitting

When using the Crank-Nicolson approximation (A.23) of the short-time propagator
on a discretized grid, it is desirable to apply the approximation to the short-time
propagators of individual parts of the Hamiltonian Ĥ. This leads to implicit equa-
tions of the form of Eq. (A.27) for each part. By splitting the Hamiltonian Ĥ as in
Eq. (A.2) into a laser-interaction ĤL = Ĥ1

L +Ĥ2
L and an atomic part ĤA = Ĥ−ĤL,

we can numerically calculate a solution without the need to invert matrices, as will
be shown in Sec.A.5.4.

A straightforward approach to the splitting of Eq. (A.22) then is

U (t+ ∆t, t) ≈ e−i∆t ĤA e−i ∆t ĤL +
1

2
[ĤA, ĤL] (∆t)2 , (A.28)
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with a second-order error in the timestep ∆t due to the noncommutativity of ĤL

and ĤA. This error follows from the Baker-Campbell-Hausdorff formula, which in
its third-order form is given by

eX eY = eX+Y + 1
2
[X,Y ]+ 1

12
[X,[X,Y ]]− 1

12
[Y,[X,Y ]] , (A.29)

and subsequent expansion of the exponential function on the right hand side up to
the lowest order of the error.

With τ = ∆t/2 we can alternatively approximate the short-time propagator
(A.22) as

U (t+ ∆t, t) = e−i τ ĤL e−i∆t ĤA e−i τ ĤL + ε(ĤL, ĤA) (∆t)3 . (A.30)

From repeated application of Eq. (A.29) the function ε follows as

ε(ĤL, ĤA) =
1

12
i

(
1

2
[ĤL, [ĤL, ĤA]] + [ĤA, [ĤL, ĤA]]

)
. (A.31)

Equation (A.30) improves the result of Eq. (A.28) by one order, being exact up to
the second-order in ∆t. Since [Ĥ1

L, Ĥ
2
L] = 0, we can split the short-time propagator

further without introducing additional errors

U (t+ ∆t, t) = e−i τ Ĥ2
L e−i τ Ĥ1

L e−i∆t ĤA e−i τ Ĥ2
Le−i τ Ĥ1

L + O
[
(∆t)3

]
. (A.32)

There are different options to split the atomic part ĤA. We define

Ĥk
A = T̂ k + V k , (A.33)

H̃k
A = T̂ k +

1

2

(
V 1 + V 2 +W 12

)
. (A.34)

The whole atomic Hamiltonian is then ĤA = Ĥ1
A + Ĥ2

A + W 12 = H̃1
A + H̃2

A. A
straightforward splitting is given by

e−i∆t ĤA
(a)
= e−i ∆t H̃2

A e−i ∆t H̃1
A + O

[
(∆t)2

]
. (A.35)

Because the H̃k
A do not commute this approach introduces an error of second order

in ∆t, as in the mathematically equivalent splitting of Eq. (A.28). To reduce this
error we write

e−i ∆t ĤA
(b)
= e−i τ H̃1

A e−i ∆t H̃2
A e−i τ H̃1

A + O
[
(∆t)3

]
, (A.36)

which has only an error of third error (cf. Eq. (A.30)). Apart from the error in ∆t, a
high symmetry in x1 and x2 is desirable in the numerical implementation, in order
not to deviate from the physical symmetry of the system given by Ĥ(x1, x2, t) =
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Ĥ(x2, x1, t). Using [Ĥ1
A, Ĥ

2
A] = 0 and [Ĥk

A,W
12] 6= 0 this suggests the following

splitting

e−i∆t ĤA
(c)
= e−i τ W 2

e−i τ Ĥ1
A e−i ∆t W 12

e−i τ Ĥ2
A e−i τ Ĥ1

A + O
[
(∆t)3

]
, (A.37)

which is, just as splitting (b), exact up to the second order in ∆t.
When applying the split terms numerically the Crank-Nicolson approximation

(A.24) is used, which has an error of O[(∆t)3]. The splittings of the short-time
propagator (A.28), (A.30) and (A.35)-(A.37) introduce an error of at least third
order in ∆t. Therefore, only the splittings (b) and (c), combined with Eq. (A.32)
are of the same order as the Crank-Nicolson approximation.

A.5.4 Discretization of the Split Short-Time Propagator

We use the discretization of our system in terms of matrices as described in Sec. A.3
to discretize the Crank-Nicolson approximation (A.23) of each part of the different
splittings of the short-time propagator introduced in the previous section.

For the interaction with the laser field we obtain from Eq. (A.12) for the factors
in Eq. (A.32)

e−i τ Ĥk
L ≈

(
1 + i

τ

2

[
−iAM−1

1 ∆1

])−1 (
1− i

τ

2

[
−iAM−1

1 ∆1

])

=

(
M1 +

τ

2
A∆1

)−1

︸ ︷︷ ︸(
L̂k

+

)−1

(
M1 −

τ

2
A∆1

)

︸ ︷︷ ︸(
L̂k
−

)

. (A.38)

It is important to note that with Eq. (A.38) inverting M1 can be avoided when solv-
ing the ensuing implicit Eqs. (A.44). As pointed out at the beginning of Sec.A.5.3
this is the reason to split the full Hamiltonian into a laser-interaction and an atomic
part. Just as in Eq. (A.15), matrices act on columns of the wavefunction in matrix
form ψ for k = 1 and on rows for k = 2. Along these lines we acquire for the
atomic Hamiltonian ĤA used in Eq. (A.37),

e−i τ Ĥk
A ≈

(
M2 + i

τ

2
(∆2 + M2 V)

)−1

︸ ︷︷ ︸(
Âk

+

)−1

(
M2 − i

τ

2
(∆2 + M2 V)

)

︸ ︷︷ ︸(
Âk

−

)

. (A.39)

Similarly, for the atomic Hamiltonian H̃A from Eqs. (A.35) and (A.36) we have

e−i τ H̃k
A ≈

(
M2 + i

τ

2

(
∆2 +

1

2
M2

(
V1 + V2 + W12

)))−1

︸ ︷︷ ︸(
Ãk

+(τ)
)−1

×
(
M2 − i

τ

2

(
∆2 +

1

2
M2

(
V1 + V2 + W12

)))

︸ ︷︷ ︸(
Ãk

−
(τ)
)

, (A.40)
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where (V1 + V2 + W12)ij = V (i∆x) + V (j∆x) + W (|i∆x − j∆x|). For the
electron-electron interaction in Eq. (A.37) we just use the exponential function

(
Î12
)

ij
= e−i∆t (W12)ij . (A.41)

We can thus write explicitly for the short-time propagation of the wavefunction
in matrix form

ψ (t+ ∆t) =
(
L̂2

+

)−1 (
L̂2

−

) (
L̂1

+

)−1 (
L̂1

−

)
UA

×
(
L̂2

+

)−1 (
L̂2

−

) (
L̂1

+

)−1 (
L̂1

−

)
ψ (t) , (A.42)

with the atomic part of the short-time propagator for the different splittings (a)-(c)
introduced above,

U
(a)
A =

(
Ã2

+ (∆t)
)−1 (

Ã2
−

(∆t)
)(
Ã1

+ (∆t)
)−1 (

Ã1
−

(∆t)
)
,

U
(b)
A =

(
Ã1

+ (τ)
)−1 (

Ã1
−

(τ)
)(
Ã2

+ (∆t)
)−1 (

Ã2
−

(∆t)
)

×
(
Ã1

+ (τ)
)−1 (

Ã1
−

(τ)
)
,

U
(c)
A =

(
Â2

+

)−1 (
Â2

−

)(
Â1

+

)−1 (
Â1

−

) (
Î12
) (
Â2

+

)−1

×
(
Â2

−

) (
Â1

+

)−1 (
Â1

−

)
. (A.43)

Equation (A.42) then yields implicit matrix equations for the split parts of the full
Hamiltonian of the form of Eq. (A.27). These are then solved successively from the
right by solving

L̂1
+ϕ

(1) (t) = L̂1
−
ψ (t)

L̂2
+ϕ

(2) (t) = L̂2
−
ϕ(1) (t)

... (A.44)

for the ϕ(i), yielding in the last step ψ (t+ ∆t). This is accomplished easily numer-
ically because the L̂k

±
, Ãk

±
, Âk

±
are tridiagonal matrices and Î12 requires multiplica-

tions only.

A.5.5 Comparison of Different Splittings

With Eqs. (A.42) and (A.43) it is clear how to propagate an initial state on the
numerical grid in time. However, for actual calculations we have to compare the
different options to split the atomic Hamiltonian according to Eqs. (A.35), (A.36)
and (A.37).

From Eq. (A.35) we know that (a) is one order less exact in ∆t than (b) and
(c). However, in each timestep (a) involves only two matrix multiplications and
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AA 21

x1

x 2

Figure A.1: Schematic illustration of the Ai. The difference of the norm of
the wavefunction in A1 and A2 yields A, a measure of the asymmetry of the
wavefunction.

solutions of implicit matrix equations for each electron. The numerical effort for
(b) is already three matrix multiplications and implicit equations and for (c) it is
four matrix multiplications and implicit equations. A good estimate is thus that
the efforts of the implementations are related like (a):(b):(c) 1:1.5:2.

In order to decide which of the splittings (a)-(c) of the atomic Hamiltonian is
suited best for our application we investigate the relative quality of the different
approaches under conditions similar to the situation when propagating our one-
dimensional model Helium atom in a laser field. There exist two important physical
conditions which a suitable implementation has to fulfill as good as possible. It
has to conserve symmetry of the wavefunction ψ(x1, x2, t) = ψ (x2, x1, t), which
follows from the symmetry of the Hamiltonian (A.2). In addition, a groundstate
wavefunction acquired by propagation in imaginary time (cf. section A.7) has to be
stable when propagated in real time without interacting with an external field, i.e.,
no density should leave the vicinity of the nucleus (and thus the grid).

To examine these criteria we choose a grid spacing ∆x = 0.4 a.u. and a timestep
of ∆t = 0.075 a.u. as in our actual calculations (cf. Sec. A.9). The groundstate is
calculated by propagating a Gaussian seed function N i

t = 1000 timesteps in imag-
inary time with ∆t = −i 0.075 a.u. (cf. Sec. A.7). Because we are only interested
in the splitting of the atomic part of the Hamiltonian, we do not apply a laser
field and propagate the groundstate wavefunction for Nt = 1000 timesteps on a
Nx = 500 grid with absorbing boundary conditions as described in Sec. A.8.

We calculate for i, j ∈ {1, 2} at time t = T after the propagation from

Ai =

∫ +∞

−∞
dxi

∫ xi

−∞
dxj 6=i |ψ(x1, x2, T )|2 (A.45)

as a measure of the asymmetry the value

A = |A1 −A2| . (A.46)



82 Chapter A. Numerical Implementation

Table A.1: Comparison of the quality of the different splittings of the atomic
Hamiltonian (A.35)-(A.37). The change of n and A due to the real-time prop-
agation is included in the columns ∆n and ∆A.

Nt n ∆n A ∆A

(a) 0 1.00 3.02 × 10−16

(a) 1000 1.00 −1.25 × 10−4 1.11 × 10− 8 1.11 × 10− 8

(b) 0 1.00 4.67 × 10−16

(b) 1000 1.00 −8.33 × 10−8 1.30 × 10−12 1.30 × 10−12

(c) 0 1.00 7.89 × 10−16

(c) 1000 1.00 −9.73 × 10−7 2.00 × 10−15 1.22 × 10−15

The respective Ai are shown in Fig. A.1 in the two-electron space. To be able to
estimate the numerical stability of the groundstate we calculate the norm on the
grid at time T

n =

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2 |ψ(x1, x2, T )|2 . (A.47)

The integrals are approximated by a Riemann sum and infinite integral limits are
replaced by the boundaries of the grid. For a perfect propagation algorithm the
groundstate would be stable (n = 1) and the wavefunction symmetric (A = 0).

From Tab. A.1 it is clear that the implementation (a) of the propagation algo-
rithm leads to an unstable groundstate and an increasing asymmetry. We attribute
this to the fact that both electrons are treated asymmetrically, i.e., that the differ-
entiation is always done first with respect to x1 (cf. Eq. (A.35)) as well as the fact
that it is exact only up to the first order in the timestep.

The loss of norm in the course of propagation is reduced by four orders of mag-
nitude by the improved splittings (b) and (c). The slightly better result for (b)
is most likely due to the reduced number of numerical operations (cf. Eq. (A.36)
vs. Eq. (A.37)) and the subsequent reduction of rounding errors. In terms of asym-
metry, the groundstate asymmetry is comparable for (b) and (c), while the asym-
metry developing in real-time propagation is better by three orders of magnitude
for (c).

Since our analysis in actual calculations involves integrating out one variable,
we decided to optimize the asymmetry behavior and therefore used propagation
algorithm (c) for all numerical calculations presented in this work.

To illustrate the improvement of the algorithm (c) as compared to (a) we show
in Tab.A.2 the average difference in asymmetry between the groundstate and the
final state after propagation and interaction with different few-cycle laser pulses.
The parameters of the calculations are detailed in Sec. A.9.
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Table A.2: Growth of the asymmetry as compared to the groundstate asym-
metry for splittings (a) and (c) after interaction of the model Helium atom
with different laser pulses (cf. Sec.A.9). The average value for nineteen differ-
ent effective peak intensities is presented for each laser pulse.

λ N 〈∆A〉
(a) 614 nm 3 6.45 × 10− 4

(a) 780 nm 3 6.87 × 10− 4

(a) 780 nm 4 3.57 × 10− 4

(c) 614 nm 3 1.24 × 10−16

(c) 780 nm 3 4.11 × 10−16

(c) 780 nm 4 3.21 × 10−16

A.6 Time-Propagation of the TDKSE Orbital

Since we have only one orbital in the Kohn-Sham equation we use Eq. (A.30) for the
interaction with the laser field while the atomic part of the Kohn-Sham Hamiltonian

ĤKS
A = T̂ + V + Vhxc (A.48)

does not need to be split further. To ensure greatest analogy to Eq. (A.37) we use
the “splitting”

e−i ∆t ĤKS
A

(c′)
= e−i τ ĤKS

A e−i τ ĤKS
A . (A.49)

This leads to the atomic part of the short-time propagator in discretized form

e−i τ ĤKS
A '

(
M2 + i

τ

2
(∆2 + M2 V + M2 Vhxc)

)−1

︸ ︷︷ ︸(
ÂKS

+

)−1

(
M2 − i

τ

2
(∆2 + M2 V + M2 Vhxc)

)

︸ ︷︷ ︸(
ÂKS

−

)

. (A.50)

The explicit equation for the short-time propagation is then

φ (t+ ∆t) =
(
L̂+

)−1 (
L̂−

) (
ÂKS

+

)−1 (
ÂKS

−

)(
ÂKS

+

)−1 (
ÂKS

−

)

(
L̂+

)−1 (
L̂−

)
φ (t) . (A.51)

This equation is solved successively as described for the time-dependent Schrödinger
equation in Sec. A.5.4.
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A.7 Groundstate Calculation

The Schrödinger equation (A.1) describes the time-evolution of an initial state ψ0 =
ψ(x1, x2, t0). In our case, the initial state is the groundstate of our two-electron
model Helium atom, i.e., the solution of the stationary Schrödinger equation

E0 ψ0 (x1, x2) = Ĥ0 (x1, x2) ψ0 (x1, x2) . (A.52)

The Hamiltonian is given by the Hamiltonian of the time-evolution (A.2) without
the interaction with the laser field

Ĥ0 (x1, x2) =
∑

k=1,2

(
−1

2
∂2

xk
+ V (xk)

)
+W (|x1 − x2|) . (A.53)

The initial state used in the time-dependent Kohn-Sham equation (A.4) is the
solution of the stationary Kohn-Sham equation

E0 φ0 (x) = ĤKS
0 (x) φ0 (x) , (A.54)

with the groundstate Hamiltonian

ĤKS
0 (x) = −1

2
∂2

x + V (x) + vhx (x, t) + vc (x, t) . (A.55)

For the form of the softcore-potentials used in this work, no analytical solu-
tions of Eqs. (A.52), (A.54) are known. Therefore, we determine the groundstate
numerically. Observing that the groundstate is the state with the lowest energy,
we use the propagation algorithm described above with the vector potential set
to zero (A = 0) and an imaginary timestep ∆ti = −i∆t. The expansion of the
wavefunction propagated one imaginary time ψi in terms of eigenfunctions of Ĥ0 is

ψ (−i∆t) =
∑

n

cn e−En ∆t ψn . (A.56)

Therefore, for bound states with En < 0 successive propagation in imaginary time
amplifies the state with the lowest energy En (the groundstate) most. Normaliza-
tion to one after each timestep thus leads to

ψ
(
−N i

t i∆t
)
≈ ψ0 (A.57)

after a sufficient number of imaginary timesteps N i
t . In principle, this approach

works for an arbitrary non-vanishing seed function. In order to reduce the number
of imaginary timesteps N i

t required, we use a Gaussian seed function, which is
already close to the groundstate wavefunction. The same arguments hold for the
Kohn-Sham equation. Thus, the groundstate Kohn-Sham orbital is determined in
the same way.

Imaginary time-propagation to acquire the groundstate wavefunction has been
successfully employed in numerous publications (see, e.g., [37,39,69]).

The groundstate energy of the respective system is then calculated as the expec-
tation value of the Hamiltonian E0 = 〈Ĥ0〉. The system is discretized as described
in Secs. A.3 and A.4. The integrals are approximated by a Riemann sum over the
numerical grid.
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A.8 Absorbing Boundary Conditions

A challenge posed by propagation in real space on a finite grid is the fact that
probability density might propagate to the boundary of the grid. In general, this
will lead to a reflection of the wavefunction and consequently to spurious effects in
the properties of interest. One solution is to choose the grid large enough. Since this
approach is limited by the numerical effort required, it is combined with “absorbing
boundary conditions” [70, 71], which “dissipate” the probability density reaching
the boundary.

We implement the absorbing boundary as an imaginary potential with small
values at the center and rapidly increasing values close to the boundary of the grid.
We use the explicit discretized matrix form

(
Vk

i

)

ij
= −iC

(
i− 1

2 Nx + 1
2

1
2 Nx

)16

δij , (A.58)

centered on the grid with an even number of Nx grid points in each direction of
the two-electron space and i, j = −Nx/2, . . . , Nx/2 − 1. C is a large but otherwise
arbitrary factor. In the calculations presented here, we used C = 50.

The imaginary potential is included in the Hamiltonians of Eqs. (A.2), (A.5) by
adding it to the electron-nucleus potentials V because of its similar structure, i.e.,
its diagonal form. In the formulas for the discretized short-time propagator of the
Schrödinger equation we therefore use Vk → Vk + Vk

i . Analogously, we use in the
Kohn-Sham equation V → V + Vi with k = 1.

It is important to note that this approach does not conserve the unitarity of
the time-evolution.

A.9 Parameters of Calculations

As a reference we will detail the parameters employed in the calculations of the
results presented in Chapters 4 - 6.

The groundstate wavefunction is determined by propagating a Gaussian seed
function for N i

t = 1000 imaginary timesteps ∆t = i 0.075 a.u. on a grid with Nx =
500 gridpoints in each direction of the two-electron space (cf. Eq. (A.7)). A grid
point spacing of ∆x = 0.4 a.u. (∆x = 0.2 a.u. for the N = 6 pulse) was used.
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All numerical calculations were performed with a timestep of ∆t = 0.075 a.u.
for 0 ≤ i∆t ≤ T with i = 0, . . . , Nt and T the duration of the respective laser
pulse. The number of grid points and grid spacings for the different laser pulses
(cf. Tab. 3.1) are given in Tab. A.3. They are chosen to ensure that the norm of the
wavefunction on the grid after the laser pulse is sufficiently close to one and that
the relevant dynamics are described well by the discretized system.

Table A.3: Size of the numerical grid in each direction of the two-electron
space Nx and spacing of grid points ∆x used in the numerical calculations
presented in the respective Chapter. For each laser pulse, simulations were
performed for nineteen values of Â in the listed range. For the λ = 780 nm,
N=4 laser pulse Nx = 6500 was used for the six highest values of Â.

λ (nm) N Nx ∆x Â Chapter

248 nm 3 1500 0.4 a.u. 0.41-2.60 4
614 nm 3 5500 0.4 a.u. 1.29-8.17 4
780 nm 3 5500 0.4 a.u. 1.29-8.17 4, 5
780 nm 4 5500/6500 0.4 a.u. 1.25-7.93 4
780 nm 6 1500 0.2 a.u. 1.23-7.76 6
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