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1 Introduction

This document contains the details which were omitted in the CPC-manuscript
for the sake of clarity. The short-time propagator for the case of linear po-
larization (propagation mode 34) and for the more demanding case of elliptic
polarization (propagation mode 44) are discussed in great detail. Their actual
implementation! follows exactly the lines developed in this manual. We suggest
that the user reads the CPC-manuscript first.

1See member functions called by propagate() in wavefunction.cc.



2 Time-dependent Schrodinger and Kohn-
Sham equation

The goal is to solve the time-dependent Kohn-Sham (TDKS) equation (atomic
units h = |e| = m, = 4mey = 1 are used, unless noted otherwise)

G,
i— W, (r,t) =
lat Z0<r7 )

1
(5[—1V + AP+ V(r) +1-Et) + Vieg [n1,,(r, t)]) Uip(r,t) (1)
for the i« = 1,..., N, Kohn-Sham (KS) orbitals W;(r,t) of spin ¢ =1 and |,
respectively. The time-dependent Schrodinger equation for a single-electron sys-
tem in a laser field results from (1) by the simplification Vee,[n1(r,t)] = 0 and
N, = 1.

The two spin densities n,(r,t) = ny(r,t),n (r,t) and the total density n(r,t)
are given by

ne(r,t) = ZU W0 (r,1)|?, n(r,t) = ny(r,t) + n(r,t). (2)

V(r) is the ionic background, e.g., —Z/r in the case of atoms or ions of charge
Z. The linearly polarized laser field is described in dipole approximation by the
vector potential A(t) = A(t)e, or by the electric field E(t) = E(t)e,, depending
on whether the velocity gauge or the length gauge is chosen. The electron-electron
interaction potential Ve, 11, (r, t)] comprises the Hartree-part Uln(r,t)] and the
exchange-correlation potential Vic,[ng | (r,1)],

Vee[n1,1(r,8)] = Uln(r, )] + Vieq[n1,, (r,)]. (3)

The Hartree potential
n(r’)

Uln(r, 1)] = / a @)

is due to the mutual repulsion of all the electrons. In practice, the exchange-
correlation potential Vi, [nq,(r,t)] has to be approximated. In time-dependent
density functional studies one commonly relies on expressions for V.., that have
been successfully employed in static density functional calculations, i.e., V., is
simply calculated with the spin densities which are present at the certain time
instant.

Evaluating the square bracket in (1) a purely time-dependent term ~ A2(t)/2
arises which can be transformed away by the substitution

U,,(r,t) = exp (i /@ dt) Ul (r,t). (5)

r—r|
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Introducing

Vi(t) = —iA(t)% +2E(t) (6)

one has

1%1/' (r,) = (—%W +Vi(t) + V() +veeg[nm(r,t>]) U, (rt).  (7)

We shall drop the ’ at the KS orbitals in what follows since the phase transfor-
mation (5) has no effect on any of the potentials and observables.
For what follows we make the following assumptions and approximations:

(A) The ionic potential is assumed spherical, V(r) = V(r),
(B) The total electron density is assumed spin-unpolarized, i.e.,
ny(r,t) = n(r,t), n(r,t) = 2n,(r,t), o=7,], (8)
(C) For obtaining the ground state configuration the central field approximation
is applied, i.e., Veeo[n](r) — Vees[n](r),

(D) With the linearly polarized laser on, Vee,(r,t) is calculated up to the
quadrupole term, i.e.,

1
Voo ] = Voo (1, 1) 4 Vios (1,1) cos ¥ + Vee2 (r, t)§(3 cos¥ —1).  (9)

Note that assumption (B) is imposed only for simplicity. A generalization to
spin-polarized systems would be straight forward.

2.1 Expansion in spherical harmonics

The KS orbitals U,,(r,t) are expanded in spherical harmonics Y;"(€2),

U, (1,9, 0, 1) Z Z Do (1, 1) Y, (). (10)

( 0 m=—¢

where € is the solid angle, defined by df2 = sind dv dy. If the initial state has a
well-defined m-quantum number m = m,; and the laser field is linearly polarized
along the quantization axis e,, m; remains a “good” quantum number and the
expansion (10) simplifies to

1 & .
\Ijia(r77~97 90715) = ; Z(I)idfmi (T, t)YVZmZ(Q) (11)
/=0



For the unperturbed atom the so-called central field approximation (CFA) is
usually adopted. This leads to ground state KS orbitals of the form

_@M;(r, Dy, (12)

\I’w-(T', 197 ©; 0) =
having well-defined quantum numbers ¢; and m; with the radial function inde-
pendent of m;. As mentioned above, during the interaction with the linearly
polarized laser field in dipole approximation m; remains a “good” quantum num-
ber, i.e., no other m # m; will be populated thanks to the azimuthal symmetry
that is retained throughout the interaction with the laser field. However, the bro-
ken spherical symmetry introduces a mixing of angular momentum and renders
the radial wavefunction dependent on m. The KS equations become

i, (r,t) = —18—2+Veff() Do, (1,1) (13)
ot ictm; \Ts - 287“2 ¢ T itm; \T

At S (v 01

cos VY, ) —=Piprm, (1, 1)
El

orr
HA(D) Y (¥,

ZI

+rE(t) Y (Y

él

+) (v

e/

N
Slnﬁ%‘}/é, > (Diflmi(r7t>

r

cos VY, ) Piprpm, (1, 1)

‘/eea[na] + V(I‘) - V0<T)|YZRZ>(I)Z€’WM (’I", t)

where we suppressed the spin index o. In the last four lines of (13) we made
use of the fact that the corresponding matrix elements contribute for m’ = m
only. VF(r) is the effective ionic potential including the centrifugal barrier and

the spherical part VO(r) of the ionic potential, VeT(r) = VO(r) + ‘LU n the
forthcoming section we specialize on spherical ionic potentials, i.e., atoms, ions,
or jellium clusters so that V(r) — VO(r) = 0. Moreover, in CFA Vi,[n,] is
diagonal in ¢ and m. However, as the laser is switched on, the density n is not
spherical any longer, as is Vie,[n,]. A full multipole expansion of Vg, [n,| would
lead to a densely populated matrix (Y;"|Veeo [10]|Y,"). Hence, the efficiency of the
numerical scheme rises and falls with the possibility to terminate the multipole
expansion after a few terms.

Defining

2 2
- (C+1) m (14)
(204 1)(2¢+ 3)
one can write the matrix elements

DN
Z,

cos VY, ") Diprn, = T<C£—l,miq)i,£—l,mi + c€mi¢i,£+17mz‘>7 (15)



. a1 0 9
TZQQ | cos VY, Z>E;¢i£’mi = <C€—1,mi5q)i,i—l,mi + CémiEq)z‘,Z—&-l,mi)

el

Cr—1,m; Cim,;
—< " “ D 1 m, F . - (I)i,f+1,mi)7 (16)

and

m. mg 1
%:<Y 1|Sln79819|}/£/ >7" il'my; (17)
1

= ((f — )erm1mi Piv—1m, — (0 + Q)Cémiq)i,f-i-l,mi)-

The matrix element (Y,""|cos?|Y,") also appears when the dipole term
Veew (7, 1) cos ¥ is introduced into (13). The quadrupole term instead leads to

1 .
5 Z<Yzml
"

3cos® ¥ — 1|V ®ypn, (18)

= Petm; (I)iémi + qoe—2,m; q)i,ZfQ,mi + qim; (I)i,€+2,mi

where
00 +1) —3m?
Pom =00 —1)(20+ 3)’ (19)
B 3 (04 1)2 —m?|[(£ + 2)?> — m?]
em = 5020+ 3) \/ (20 +1)(20 +5) ' (20)

Inserting (9) into the TDKS equation (13) and using (15)—(18) one obtains
.0 19 0 2
o um = (557 + V) TV )+ pen Ve 8) ) P (21)

0 0
iA(t ( P SIS SN
1 ( ) C[ 17 zar 7‘6 17 7 + C@ zar 7£+17 7
1 1
_;ECZ—I,miq)i,K—l,mi + ;(4 + ]-)Cﬂmiq)i,e—l—l,mi)
"‘(TE(t) + Vo l(r, t)) (Cé—l,m,- Do 1m,; + Cﬁmicbi7f+1,mi>
+v;2e (T7 t) <q€—2,mi (I)i,é—2,mi + qem,; (Di,f—i—Q,mi) .

2.2 Expansion of the Hartree potential up to the
quadrupole

In the expansion (9) each term V.2, j = 0,1,2, consists of the Hartree part U7
and the exchange-correlation part V.7 .



With the spin density (2) written as

Z D Bl (1, )i, (r, Y ()Y () (22)

i=1 o

and the well-known identity

1 4o vt "
R~ Z% 11 o N @Yr@), (23)

where 7~ = min(r, ), r~ = max(r,r’), it can be shown that the Hartree potential

(4) is given by
4 rL
— 0 1 <
n]_QZYLm),/QLH/dr ma (24)
[20+1
x Z Z Do, Digm, (17,1) 20+ 1C€0LOC€m,LO

=1 o

C;abﬁ are the Clebsch-Gordan coefficients. Using the property Cfé%on;ﬁo =
2041080 .4 o Ba. (24) can be written in the form

20+1
_QZYO ,/QL /'Zjl SO AL 1) (25)

where we introduced the entities

AL(r ) = A" (1), (26)
~ 2£ + 1 / g’mj
Ang‘M(7"7 t) = %’——H foOLo m; LM zém (7, t)q)jﬁ’mj(r» t). (27)

/~\JLZ.M (r,t) is a key expression and will appear frequently in our forthcoming dis-
cussion of the KLI exchange potential.
In terms of the auxiliary entities

A(r,t) = QZZ@,M (r,t)] _QZA (28)
@(’I“, t) = 2 Z Z <C£_17mi q);:é—l,mi + Cfmiq):,ﬂ—}—l,mi) (I)ifmi

= 22/\1 (r,1), (29)



No
E’(Ta t) = 2 Z Z (pfml q);kgml + Qomy; (D;k,@-ﬁ‘?,mi + qr—2,m; @25—27mi> q)ifmi
=1 /

)M (30)

one obtains

U0, 1) / dr’ri AG D), (31)
U (1) = / ar' 5 0 1), (32)

U2(r, 1) — / ' "< =, 1), (33)

3 Propagation scheme for linear polarization

3.1 Breaking down the Hamiltonian

In this and the subsequent Section we essentially proceed in line with the work
by H.G. Muller [Laser Physics 9, 138 (1999)]. In matrix notation (21) may be
written as

10,97, 1) = (Ha + o + HL, + HE, + HE, ) @(r,1) (34)
with
1 82 4 0 2
Hae = 552 + Ve + Voo + Pem Ve (35)

In this Section we suppress the orbital index ¢ of the quantum number m. It
is understood that the m; of the KS orbital on which the operator acts has to
be taken. ®(r,t) = (®gn(r,t), @1, (r,t),...)" is a vector in f-space with the
quantum number m arbitrary but fixed, and, of course, only ¢s with ¢ > |m| are
allowed. The matrices Hx, HO H® and HO) are

ang’ ' 'ang’ ang

0 com O 0
Com 0 Cim 0

Com
0 Com 0 0
A(Zf) —Com 0 201m 0
(€0 ;
Hie = —1— 0 —2cm 0 3cm )

—362m



0 com O 0

2 B , Com 0 Cim 0
H:Em)g = (TE(t)‘i‘Vee(rat)) 0 cam 0 com 7

Com

0 0 qom 0
0 qim
0

Hix = Vet | 4. o
D Qim
Each entry in the vector ®(r,¢) depends on r. In the code, r-space is discretized,
rn = nAr, n=12,3,...,N,

so that our discrete ‘numerical” vector is of the form

w(t) = ([ 2ha(0), o Phe ()| @h(8)s o @M @)L (1) )T,

where N, and L are the number of grid points in r- and ¢-space, respectively.
Now the different pieces of the total Hamiltonian,

H= Hat + Hmix + Hanga (36>
Haﬂg = Hz(;l’g?) + Hz(ii)gv Hgil?;) = Hz(iil)g + Hgl)g’
operating in r- and f-space, will be analyzed.
H.: is diagonal in /-space, HS{? and H;i)g are diagonal in r-space. Hpy is,
unfortunately, nowhere diagonal. The matrices Hyix and Hane can be written as
a sum of matrices acting in two-dimensional ¢, ¢+ 1 or ¢, { + 2 subspaces only, for
example,

Com 0
PO w5 o) (0 0
= Com + Cim +
O cm 0 0 0 0 0 cim O

One matrix in this series couples a certain angular momentum ¢ with ¢ + 1.
In what follows the corresponding Hamilton operator is labeled accordingly:

m ([ Pom(r,t) ) 0 cm Dy, (1, 1) )
mix ((Dgﬂ,m(r, t)) iA(®) ( Cem 0 ) (@e+1,m(7“, t))’ (37)
m (0] (7” t)
H(1,2)e ( em T, ) 38
w6\ (1) 9

_ {_iATft) ( _gm tom ) + (rE@® + V(1) ( Cfm o )} ((I)if?i?rf)t)) ’
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where

B (+1)2—m?
tom = (£ 1>\/(ze+ Dl +3) (39)

and

tm [ Dy (r,t) 0 D (1, )
H®) fm\h = V2(rt m my . 40
ang q)€+2,m (7", t) ee( ) dem 0 (I)Z—I—Q,m(Tv t) ( )
Spatial derivatives with respect to the radius r are present in H,; and Hy.
The Numerov and Simpson approximants to the second and first derivative of a

function f(r) are
"= 2MTALf, f = MTTA S, (41)

respectively, where Aof = (fui1 — 2fn + fuo1)/R?% h = Ar, Avf = (fra1 —
fnfl)/Qhu and

10 1 0 410
1|1 1001 1141
My==c 0 1 10 1 | M=glo14 1 |- (2

M, and My operate on f = (fi, fo, ..., fn,)". Applied to our problem, the matri-
ces My, My, Ay, Ay act in r-space, i.e., on all £-blocks ®,(t) = (®}(t), P2(t),...)"
independently.

The upper left matrix elements of My and Ay have to be modified because
(42) would imply f”(ro) = 0 (note that 7y is not part of the grid). However, for
a Coulomb-potential —Z/r and £ =0 at ry = 0

(0, ) = ~229)(0,1) £ 0

~ 1~
holds. Moreover, one has to ensure the Hermiticity of M, A, in order not to
destroy unitary propagation. Both may be achieved by modifying the upper left
matrix elements,

. 2 Zh
A = —— (1=
(Az)us h? ( 12 — 1OZh> ’
2

(Mg)11 = —2 (1 + %(Az)l,l) :

The corner elements of A; and M; have to be modified as well because the
~—1 < .. . . . ..
operator M; A; must be anti-Hermitian for a unitary time propagation. Writing

442 1 y 1
~ 1 1 41 < 1 -1 0 1
M; == A= —
7% .o ’ L™ 9p .
1 442 -1



one finds that with + = v/3 -2, 2/ = y = z and v = —y anti-Hermiticity of
M A1 is ensured.

To summarize, we write the different contributions to the total Hamilton as
follows:

H — Hat+z_:2 (an”fx+ H(L2" H;i{;m>, (43)

(=0
Hy, = 1e®(|\7|;1A2+VﬁH+V +pfmv2) (44)
Hm = iA(t)Lo, @ My Ay, (45)
HED™ = AT ® L+ L@ (1B + VAGw )L, (16)
HO ™ = Pom @ V2(r, 1)1, (47)

where 1, and 1, are unity matrices in /- and r-space, respectively, and

. O Com o O t[m o 0 Qem
I—Zm - ( Cfm 0 ) Y Tﬁm - ( —tgm 0 ) 9 Pﬂm - ( qu 0 ) . <48)

Note that L, and Ty, act on £,¢ + 1-sub blocks while Py, acts on ¢, ¢ + 2-sub
blocks.

3.2 Approximating the time evolution operator

For a sufficiently small time step
U(t + At, t) = exp(—1AtH(t + At/2))

is a good approximation to the exact propagator, i.e., W(t + At) = U(t +
At,t)¥(t). With the Hamiltonian (43) an approximation, accurate up to sec-
ond order in At, is given by

0
Usplit (t + At7 t) = H eXp<_iTHz(j1)gem)
{=L-3
0

H (exp —17'Ha11g2€ ) exp(— 17'Hf;71’fx))
=L

X e (—lAtHat)

2fm

H (exp (—irHI™ Y exp(— 1THa}lg ))

{=
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with 7 = At/2. The unitary Crank-Nicolson (CN) approximant to exp(—iAtH)
is

exp(—iAtH) = (1 +iAtH/2) 7 (1 — iAtH/2) + O(At)?

so that
Uepiit(t + At 1) =~ Uen(t + At t) (50)
0 0 4
_ H Zf:n H <Rflm [Xﬂm} Xfm) QJ—rl Q,
{=L-3 {=L—2
L—2 1 L—3
<] ([x’iﬂ Xtm Rfi[n) [[z
(=0 £=0
where .
R = (1+igHG2™) (1 -igHG2 ™). (51)
X =14+i- Hfig?x, Qi = 1 +irH,, (52)
1
zyr = (1+igHD™) (1 -igHE™). (53)

R'™ can be evaluated using Eq. (46):

e = () (54

ném
with A
1A(t
Snﬁm:_l <>tfm+< E(>+V1(Tn> ))Cfm (55>
leads to ) | 2
1—|w —2w
Rém _ ném ném 56
" 1 + |wn5m’2 ( 2wn€m I |wnfm|2 ) ’ ( )

A
Wnem = izsfm = a ( (t)

5 5 tom +1 ( W E(t) + VoL (1, ))cgm>, (57)

n

For Z!™ one obtains

1 |’U 0 |2 —2’[) Y
me — nfm ném 58
" 1 + |/Un£m’2 < Qvnfm 1 — |Un€m|2 ’ ( )
Untm = 12Vee( n) Qem- (59)

Let us now turn to the factor [Xﬂm} X“™ which involves ¢, £ + 1-sub blocks

and a non-diagonality in r. We factor-out |\~/|171 and write
—1 _ - -
[xﬁm] Xm = YT Y — 1, My gA(t)Lzm ® A, (60)

11



The matrices Yim are not tridiagonal but block-tridiagonal only:

Im
Y:I:

4% j:4yg€m é :l:glém
:i:ylgém % :i:gQEm 6 .
6 FGem 3 6 :i:gfm
6 3 6
1 2 1
F9em 5 : 3 igem 3 i
6 FGem 3 6 ig@m
Toem & A
S Tom| TE Fugm
+9em % +YGem ‘HT‘T

with ggn = TA(t)cem/4h. The rank of these matrices is 2V,. It operates on
vectors of the form

Fém:(

Dy (r1,t), Pogrm(r1, 1) |,

(I)gm<7‘2, t), q)g+17m(7’2, T,) s

)

. . 9 . im
The matrices Y{™ can be transformed into a sum of two tridiagonal matrices Y

and Yé +, acting in two distinct vector spaces. Since

T _
BL,,B' = ( 0

one obtains

with

—fm

—fm

Com, 0
—Cim

)

(51)

V' = (BeL)Y"Be1,) =Y+ Y, (61)
22+ ygum 0|5t gmm O
0 ol 0o 0| o0 0
§T9m O 2 0|5£gm O
0 ol 0 0| o0 0
T F9m O] HEEFygum O
0 0 0 0
0 0 0 0
0 2T 9gom |0 £ T gom
0 0 0 0 0 0
0 FFgm |0 2 0 §FYem
0 0 |0 0
0 tEgm |0 =+ ygm
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The vector Iy, transforms accordingly,

Fﬁm = (B X 17“)]-‘€m = F1€m + F%m (62)
where
(I)%m + q)%-l-l,m O
0 _(I)ém + (I)%—i—l,m
1 (I)?m + (I)g-i-l,m 1 0
f m = —— 0 , F m = — _CI)%m + CI)%Jrl,m . 63
n = 5 : 2wm = 75 : (63)
N, N,
(I)Em + (I)f-i-l,m N 0 N
0 _Cbéng + CI)@J:Lm

Now it is easy to see that
—im— —im —im, — = —im— —im—
Yj: ]-_‘Zm - (Ylj: + Y2j:)(]-_‘1€m + F%m) - Ylirlﬁm + YQ:IZI‘QZWM

Lgtm ot e
because the matrices Y|y, Yo, operate in distinct spaces.
Finally, the factor Q;'Q_ in (50) may be written as

Q'Qu =wi'wo (64)

with
Wi=1,® |\~/|2 +irl, ® <A2 + MQ(Vﬁﬁ‘ + ‘/e% +pZm‘/;26>> . (65)

The matrices W are already diagonal in ¢ and tridiagonal in r and thus need no
further treatment.

The short-time propagator for linear polarization (propagation mode 34) fi-
nally reads

0 0
Uan(t+att) = [[ 22 I1 (Rf;m(B ®1,)7 [Vim] Y B e 1T))
{=L-3 {=L—-2
xWTIW (66)
L2 . L-3
< [ ((B ®1,)" [Vim} Y"B® 1T)Rf;m) 11z
=0 =0

3.3 Calculation of r/rLl.integrals

The integrals (31)—(33) are of the general form

L
FE(r) = /dr’ errl (r'), r< =min(r,7"), 7~ =max(r,r").  (67)

>
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Integrals of the same kind will also appear further below when the KLI exchange
potential is evaluated. Using the simple trapezoidal rule for numerical integration
this translates to

L_ pL | 7L
By =F+ Fy (68)
j—1 oL Ny—1
=Y Ar fitmr Z Arf—i LH (69)
=0 J
The FjLs can be calculated recursively,
s L o L
L L
Fli =SB+ Ay, Fhy = 22— arfi (70)
J+1 J+1 J T

3.4 Exchange-correlation potential

There is a variety of approximations to the unknown exchange-correlation poten-
tial Vic,[n] in ground state DFT. In practice, the same functionals are often used
in TDDFT, i.e., the stationary ground state KS orbitals are simply replaced by
their time-dependent equivalents. In this paper we will discuss the implemen-
tation of the exchange potential proposed by Krieger, Li, and Iafrate (KLI) (cf.
CPC-manuscript).

So-called “optimized effective potential” (OEP) methods take the exchange

energy
_ ! 5[40 Vo (1) Wi (1) Wy (1) Wy (1)
— A [ fopn T )

o jk=1

exactly into account. The OEP method has been also extended to TDDFT.

However, the OEP method yields a complicated integral equation for the exchange

potential V. This OEP integral equation is impracticable for actual numerical

implementations, especially in the time-dependent case. Krieger, Li, and lafrate

(KLI) proposed a method to solve the OEP integral equation approximately. The

numerical KLI results yield highly accurate ionization potentials, for instance.
The KLI potential is given by

Vit (x) = V35 (1) 4 Vio(r) (72)
where N1
Z |,
=3 e (73)
Qia - <‘/)(KLI>icr - <Uxi0>i07 (74)
N,
1 S5, ( 5., Vi (r) 0, (r)
Ui (T) = T (@) 5% 2% / d*r T r—r| (75)



and
Z “I’"’ Rt (1) (76)

is the Slater potential. & denotes the real part. (X),, is the spatial average of
an entity X (r) weighted by the orbital spin density |¥;,(r)|?,

(X0 = / &7 |0 (1) PX (1),

As mentioned above, it is understood that in the time-dependent version of KLI
all arguments (r) are replaced by (r, ).

For calculating the ground state, uy;, can be chosen real, so that R may be
dropped in (76). The sum in (72) excludes the highest occupied orbital since it
can be shown that

(Vio ) Noo = (Usio) Ny (77)

The numbers (VEM), in (72) are calculated by solving the matrix equation

i (6;i — Mjio)Qiv = (Vi3 ) o — (Unjo)jo (78)
i 0 ()2 (1)
My = /d e (79)
for Qig.

3.5 Calculation of V5 (r) and V,,(r)

Using (11), (23), and the Clebsch-Gordan coefficients Cy), 5, the Slater potential
may be written as

v 2L +1
Vi(r) = § > > (- ctm (80)
i 20 (1) LOLO LMLM
\/47rr ne(r ” T \/25 +1
. L
AR () /d A )
where

26 + 1 / 'm; %
20 + 1 50%0 KmiJLM ifmi<r>q)j€’mj<r)' (81>

15



Note that only M = m; —m;, M = —M, and m = 0 contribute to the sums over
M, M, and m so that (80) can be reduced to

2L +1
VS r _ j—mg CEO C«ZO
xa( ) \/ET’ na l% 1: LEM: 20+ 1 LOLO™ Lmj—m; Lm;—m,
- L
X Lm; —mi r Lm] —m;
<R ) far TR e 52)

;vit(;h AL = AlemJ ~™ In passing we note that A(r) = 232N A%(r) since O =
aclary-

Expression (82) gives us a multipole expansion of n,(r)VS (r). However, an
expansion of V% (r) itself is needed in our numerical scheme. Hence, the factor
ny(r)~! should, in principle, also be expanded in spherical harmonics, making
the multipole expansion of V.2 (r) even more complicated. We thus, in this work,
restrict ourselves to KLI in central field approximation (CFA). Note that the CFA
is a prerequisite to obtain ground state KS orbitals of the form (12) at all.

In CFA, expression (82), upon neglecting all terms with ¢ > 0 and replacing
ny(r) by ny(r) = A(r)/(87r?) with A(r) according (28) (remember assumption
(B), Eq. (8)), simplifies to

VE(r) = Z SR ) [ar R 83

,j=1 L

(note that Co0ys = (—=1)* " *dapda—p/V2a + 1).

If one is just interested in the ground state Slater potential of closed-shell
systems, (80) can be significantly simplified further. Making use of the form (12)
for the ground state KS orbitals, rewriting sums over all orbitals like

qhelli z

Z =2 2 - (84)

i=1 m;=—¥;
with ¢ running over the different /-shells now, and making use of the unitarity
relation for Clebsch-Gordan coefficients? one arrives at

No

VEE(r) = —%Z%@)@;ﬂjv) (5)

,j=1

[Cm r L
ZiOLO ’ * , ’ 7"<
E - (O d. ,

% 20; +1 /dr () ®jot; (1)

ZWhen relations like > 3 CglbﬁC(f:};ﬁ = d¢er0~+ are used it is less error-prone to start with

expressions like (80) where the sums over M, M, and m are still retained.
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where we revoked (84) for both i and j, e.g., (20;4+1) 3.7t = S~ The upper
index 0 at V2 (indicating the monopole term) has been dropped since closed-shell
systems are exactly spherical. Note that the main steps that lead to (85) relied
on the fact that the sums over m; and n; were complete (closed shells) and that
the radial wave functions do not depend on m; and m; (spherical symmetry).

For f/xg(r) one finds

Vo) = m«i —ZQMZWH REYRQ),  (86)

No—1

Z Qs A (87)

No—1

and

VE(r iot; ( (88)

with @, given by (74).

3.6 Calculation of (u,;,)js, (V) jo» and Mj,

By performing a very similar calculation as in the previous section for V5 (r) one
obtains

L
,
(te); ZZ /drAgj /dr R (r) < (89)
k=1 L r>
and for the ground state
2
No [ka&o}
g _ "
solfs = =3 [ By () (00
k=1 L
/ * / / Ti
x [dr quUZj(r )Proe, (7 )m
>
For <‘/;(SU>JU

VS, = — / ZZA P20+ 1)CE Clmms - (g1)

zk 1 rie

<AL () / A (92)

>
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and

S 2 2 o *
Volie = - /dr qu)jaej(r)l %:1%&(7")%0@(7“) (93)

1,0

2
[CZ-OLO] rk
i <

X EL 20, + 1 /dr (I)u%( /)(bkaék(r/)riﬂ

are obtained.
The matrix elements (79) are given by

My — / dr % ;(m L)AL () AL () (94)

and simplify in the case of closed-shell ground state systems to

S S £:0 m s
Mﬁa Mfzcr Z(2L + 1) CZ;OLOC ]ijLOCf 8LOC€1m1LO (95>
L
where
S 2 2
M, = A( )I%—e (r) 7| Pige, (r)]". (96)

An alternative expression reads

s ~res (263 + 1)(261 + 1) Lo 2
Mfw - Mjgiff %/[: 2L + 1 [ij08¢0i| |:CK —mjt; m1i| : (97>

Although expressions (95) and (97) depend on the m-quantum numbers m; and
m; the right hand side of (78) must not depend on these in the case of closed-shell
ground state systems. In fact, since Q;n, = 0, both Q;, and M ffa are independent
of m;,

No Nshells
Suer= 3 Yanen Lyl e

=1

and >, (CF or0)? = 1 one easily verifies that

Ng Ny

S OMEQS =D MEQS. (98)

=1 =1

Thus, for calculating the ground state of closed-shell systems one can use M2

Jio
instead of the more complex M ng for solving the matrix equation (78).
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4 Circular polarization: working in (7, ¢, m)-
space

In the case of a circularly polarized laser field the vector potential has (at least)
two components. If the ionic potential has spherical symmetry and the dipole
approximation can be applied one may choose the vector potential as

A(t) = A,(t)e, + Ay(t)e,. (99)
The time-dependent Schrodinger equation then reads

10,0 (r,t) = (—%VQ + V(r) —iA. ()0, — iAy(t)ay) W(r,t). (100)

After an expansion in spherical harmonics one obtains

: 1 82 eff
18tq>@m = —éw + ‘/g (7“) (I)@m (101)
i . . 1
—% (fm|lexp(ip) A" + exp(—ip)A] sin 19|€’m’>8r;(l>g/m,
o'm!
1 . e . 5 .
~5 Z(ﬁm] [exp(ip) A" + exp(—ip)A] cos V| 0'm") D sy
om!

— 5" (tm|[expliv) A* — exp(—i) A] —— B, [0 ) By

Cor o~ sin ¢
100 .
= <—§w + ‘/g H(T)) (I)gm
i . . 1
—g (ml [exp(i) A" + exp(—ip) A sin 9] ¢'m') 9, ~ @
'm’

1
sin

_21_r ;n:/(fmbzl* exp(ip) (COS Y0y + —19850) 10'm"Y Dy
_21_7" %;(Empzl exp(—ip) (cos U0y — %0@) 10m YD gy

sin

where [fm) = |Y;*) and A = A, + iA, have been introduced. If the ladder
operators L. are defined as

L, = —% exp (i) (dg + icot ¥,) (102)

they act on a spherical harmonic according

Ly|fm) = TNE |6m £ 1) (103)
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where

Ni_vﬂ@+w—mmwﬂy_¢@¢mx&ﬂn+w
m — 2 - 2 .
This may be used to rewrite the time-dependent Schrodinger equation as

2 Or?
fﬁszwwmz> A{lm|1 — 1[¢'m/)d, (104)

——MWHW>ﬂ+mH”@mLJW m'y(1 — m')

2
i&,@gm = (—la_ + Veff(r)) (I)fm

[

*

A A
—7<€m|10|€/m' + ]‘>N£—£_m/ + ?<€m|10|f/m/ - ].>N87m,}q)g/m/

with (¢m|LM|l'm") = / dQ VY My . Three spherical harmonics integrated

over the solid angle {2 may be expressed in terms of Clebsch-Gordan coefficients
co
aab?

(m|LM|0'm') = /dQ Y YMyr = \/ @l D) O roCom -

The Clebsch-Gordon coefficients arising from the terms in (104) are quite simple
and couple neighboring /s and ms only,

. [3 (0+m—1)(¢+m)
(Im|11|¢'m"y = 47T5m,m/+1 <5£,£/+1\/ 2(20 —1)(20+1)

g ((=—m+D(l=m+2)((+1)
0,01 (2f + 1)(2[ + 2)(2£ + 3) 7

o 3 (L—m—1)(—m)
(Im|l —1|'m") = \/%5,”7,711_1 <5z7£’+1\/ 2020~ 1)(20+ 1)

i (l+m+1)l+m+2)(+1)
Lot (20 +1)(20 + 2)(2€ + 3) ’

. B 3 (f + m)w - m)
(Em|10['m" +1) = 4/ 47r5m,m/+1 (55,“1\/(% —1)(20+1)

+&yl¢w+mr+nw—np+n>’

(204 1)(2¢+ 3)
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o B 3 (+m)(l —m)
({Em|10[f'm' — 1) = 47r5m,m/_1 <5e,e/+1\/(2€ —1)(20+1)

(+m+1)(—m+1)
+5M’1\/ (204 1)(2¢+ 3) ) '

Using those results one arrives at

1o
2 0r?

i - {+m
_ A* ’ ’
+2W2m/{ Om,m/+10¢,¢ +1\/(2£+1)(2€_ 1) X

|0 ) v

00 = (=503 + V) @i (1)

—j¢w—mww—n—mwfwi

- f—m+1
A%y 2100 01—
+ ;m/+10¢.¢ 1\/(2£+1)(2£+3)x

o) v

_%\/(E—Fm—i- D((C+1)(0+2) —m(m— 1))]

- {—m
+u4&nm¢15aw+1w/

20+ 1)20-1) "

x[—(&ﬁ-?)m

+%¢(e +m) (= 1) — m(m + 1))

) {+m+1
+A5m,mf—15w’—1\/(2£ TDE+3)

X

(0. + ) Vi+m+2

S m A DT DI+ 2) —m(m + 1)

}q)g/m/

which may be written as
i0,® = H®
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where
H= Hat + Hmix + Hanga (106)

like in (36). H,; is diagonal in (¢, m)-space while H,p, is diagonal in r. The matrix
components of Hae, Hpmix, and Hy,e are given by?

/ml 1 82
Mty = Seatmom (5505 + VE0)) (107)
[Hang]ﬁ;znl - 1r ® <A€m6m,m’+15€,l’+1 + Bémém,m’—&—lél,i’—l (108)

+Aﬁm5m,m’—15€,ﬁ’+1 + Bﬁmém,m’—léﬁ,f’—l>y
[Hmix]g;zl/ = (Cfmém,m’+16€,f’+l + IDémém,m’Jrl(SZ,Z’fl (109>

+C~Zm5m,m’—15£,€’+l + ﬁfmam,m’—15€7€’—l> ar
with

oA {+m B —
Aem_Aem_g\/(%—l—l)(%—l)[ mv{+m—1

—¢w—mww—n—Mm—n@

N . _ifl t—m
Aﬁm:A‘—m_ﬁ\/(%H)(%—n [_m”f_m_l

+/(C+m)(0(0 —1) —m(m + 1))} ,

~ iA* {—m+1
Bim = Bim = 5, \/ Gl 1) 20+ 3) {m VE—mt

—(l+m+1)((+ 1) +2) —m(m — 1))},

. .4 (+m+1 —
Bfm_B‘fm_ﬂ\/(%qtl)(%Jr:s) [m Erm2

v/ (=m+D((L+1)(+2) —m(m + 1))]

3The radius r is taken nondiscretized for the moment.
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¢ 1A [(t+m)(l+m—1)
CEm e\ @+ n@2e—1)

2\ (2+1)(20-1)
A J=mr ) —m+2)
Dim =Dy =~ \/ (20+1)(2¢+3) 7

A [(t+m+1)(+m+2)

Dy =D}, =
‘ tem T (20 + 1)(20 + 3)

The Hamiltonian H,; acts on each m-component of the wave function separately.
The wave function may be represented as a vector

®— (\M,

where the ¢-subblocks are indicated with boxes, and the discretized value of r is
fixed.* In this representation Hang reads

T
(1)2727 (1)2717 (1)207 ®21> q>22 sy q)LLfly CDLL D

(1)1,1, q>107 (bll

Y g ey

4Since Hang is diagonal in r-space there is no need to indicate the value of r. Hang simply
must be applied to each r-subblock.
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1|}i| ‘ ‘m (+1,m—1
Hfr?;x = —— Im 0 exp(_1¢)d€m ® 87“7
14 + 17 m—1 eXp(i¢>6€+l,mfl 0
» i[fl\ ‘ ‘m (+1,m+1
Hmix = T Im 0 eXp(HZﬁ)dem X am
C4+1,m+ 1| exp(—id)Cri1mt1 0
where

- \/(% f;(;rz = [~V m =T = (=)= 1) = m(m - 1) ,

G = \/(%fl;(;’;_ 3 [—m\/ﬁ— m—1+/l+m)ll—1) —m(m+ 1))} ,

bem = \/(256—#_17)722—;—1#3) {m\/ﬁ —m+2—U+m+1)((L+1)(L+2) —m(m— 1))} = —Qg4+1,m—1;

by = \/(2;:_17)?2; _11_ 3 [m\/f +m+2+ \/(E —m+D)(({+1)l+2) —m(m+ 1))} = —Qgi1m+1,

= Cp,—m = d¢—1,m—1,

_ [t+m)(E+m—1)
=\ T2 1) 20— 1)

. jl-m)(l-m—-1) B
Com = \/ (26 n 1)(25 — 1) =Cl—m = dﬁ—l,m-&-la

= dy,_m,
20+ 1)(20 + 3) b

dgm:\/(z—mﬂ)(z—mm) -

A (£+m+1)(£+m+2)_d
fm = +1)(20+3) ™
and the phase ¢ is defined through
A= |fl| exp(ig).
Hg’;fg and ﬂi?g may be rewritten as
g F ‘ ‘m (+1,m-—1
Im 1|A| ]
Himg = 5 bim m 0 exp(=ig) |, (112)
" (+1,m—1]—exp(ip) 0

N J/

~~
Pém
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‘ ‘m (+1,m+1
exp(ip) . (113)

H and H . may be simplified as well:

mix

‘ m  (+1,m—1

A
anT?x = 1|2 |d€m {m 0 exp(—igb) ®ar7 (114>
C+1,m—1]exp(ip) 0
L
» 14| - | m (+1,m+1
H™ = : L dpm ‘m 0 exp(i) ®0,. (115)
C+1,m+1|exp(—iop) 0
L

A Crank-Nicolson propagator Ucy which advances the wavefunction over
At = 27 may be chosen as follows:

0 — B
Un(r) = ] H(Hl H) (1-igHm) (1+i5 Hﬁ:;;) (1-i7Hm)
=L—

L 2m
-1 m ~em o\ T m
(1+1 Hane) (1 1THﬁng) (1 +i%Hiix> (1—1;Hfmx>

'

= {m =~ Lm

R X' X"
X (14 i7Ha) " (1 — itHa)
Q. Q

» ﬂo ﬁ (i) (1) (14 i2An) (1)

— -1
Im Im Im Im
(1 + 12 Hmlx), <1 — 12 Hmlx> (1 + 12 Hang) (1 12 Hang),

Xim XZm le

(Rgm [Xﬁ_m} -1 Xz_m F*{@m |:>~<i_mi| -1 Xf_m)

-/

i

{=L—-2m=¢(

cara T I ([)0] %R pery xenmen)

=0 m=—¢

As in the simpler (r,{)-case it is helpful to break the different factors of Ucy
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down into digestible pieces:

- -1 -
-1 Ald, ~ 1 Aldgn, <1
[Xﬂm] xim = <1+T| 4|1£ L®M11A1> (1—¥L®M11A1>

-1 .
~ Adm X Y Adm A
= <1£m®M1+T| de L®A1> <1fm®Ml_%L®Al>7
Yem g b Y‘I”m g
-1 .
o em] 1 o om ~—1 % A m ~—1 %
[xi] xm— (1 M11A1> <1+T| l‘ L®M11A1>
Ald - Ald
B (1 I umLMl) <1£m®M1+ |Z|Lfm[®&>7
ol Y"
~ 1 ~ -1 ~_1 ~
Q;IQ, = (1 + iTlgm X (M2 1A2 + Viff)) (1 - iTlgm (24 (M2 1A2 + Viﬂ))

~ ~ ~ -1 ~ ~ ~
= L @ (Mo +i7(Bs + MoVig) ) L @ (M — i7(A + M3Vep) )

(.

~~

W, W_
~(m
Let us first evaluate R™™ and R, respectively,

R = (1= €bimP™) 7 (14 €bemP™), &= TA'IA‘
;

1 < 1-€%7, 2€exp(—1¢)bem)

1+ 22\ —2€exp(io)bum 1— &%
Bl _ L ( 1— &3, 2§exp(i<é)l~)gm)
14202\ —26exp(—ig)bey, 1 —&%F, )
Next,
yim = (M1 + CdgmLAl) . (= %A',
?im = <|\N/I1:FCJZmI:A1>

are tackled. Observing that with

5 L (—exp(iqb) 1)’ g t_pi_ ! <—exp(—i¢) eXp(—icb))

T V2 explio) 1 V2 1 1

and
= 1 [ —exp(—ip) 1 -1 =t 1 [ —exp(ip) exp(ip)
8= 5 (Tt 1) B (TP )
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one has
-1 0

t — BB =
BLB' = BLB —( 0 1

)

it follows that
Yo7ty — BIB[YY"] ' BIBY"B'B

B' [BY’"B'] ' BY""B'B

—1
- ~1 0 & - ~1 0 &
= BT{M1+Cdzm( 0 I)Al} [Ml—Cdzm( 0 1)&}8,
~tm] 1 ~m |~ ~ 10\ 1 ' ~ -1 0\ x |5
Y, -

where the explicit indication of subspaces (i.e., the symbols 1, and ®) was

suppressed since it is clear in which spaces the matrices act. Like in the (r, £)-case
L gtm T . - :
one may break the matrices Y, Y, down into a sum of two tridiagonal matrices

acting in distinct vector spaces. Looking, for example, at one (¢m; ¢+ 1,m — 1)-
subblock it is seen that

—1

—1

where, just for illustration, the radial coordinate was discretized with four points
only. Therefore, with (' = {/2h one finds

4% Fy'dem % F (' dem
HTVL +y('dem % + {'dom
% + C’dlm 3 % + C/dém
1 ! 2 1 /
Vem_ E:FCdZm 3 5:|:Cd€m
= = Iyed Z I'r¢d
6 < lm 3 G ?C m
é + gldém % % + Clem
é + gldgm 44(;1 + yC'dem
1 / 4+x /
E:ch/m 6 :chdfm
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B2 4 yCldem

4+

% T y¢ dom

% + </d~€m
é + gldfm

% + C’dfm

% + CICZZm

3

keolvo

é + Cldém 5
% + C’dém

& F dpm ]
% + C/dlm

3
2
3

5 £ dim

% + CIJZ'm

d+x

é + CldlnL 6 + ycldﬁm

% + Cldém

—=fm —
where the result for Y, is the same as the one for Y, but with the replacements
~ =fm
+ — F, F — =+, and dy, — dp,. However, one must not forget that Y, acts in

the (¢m; ¢+ 1,m + 1)-subspace.
One may introduce the splitting

—Im —fm —fm

—im —im —im
Yo =Y + Yo, Yo =Y, + Y

where
HTx$y€/d€m 0 %:':C/dém 0
0 0 0 0
T Cdpn 0 z 0|§T¢don O
v _ 0 0 0 0 0 0
e §+0dun O] 3 0] §Fdem 0|
0 0 0 0 0 0
%icldﬂm 0 HTxin/dZm 0
0 0 0 0
0 0 0 0
0 5 +y¢'dun |0 g+ Cdm
0 0 0 0 0 0
vm_ | 0 §FCdm |0 2 0 &+(dum
+2 0 0 0 0 0 0 ’
0 #F¢dyn |0 2 0 ¢+{dm
0 0 0 0
0 %:Fcldﬁm 0 MTx:Fyglem

—fm

Tém —1 _zm
and Y, , accordingly. Let us check how, for example, BT [Y i ] Y_ B acts on
the wavefunction vector

( =)

corresponding to the (¢m)-subblock under consideration. One finds

T = (| ®pn(r1), Poitm-1(r1) || Pom(r2), Peyim-1(72)

m —tm] L —tm m —tm] L —tm —tm —im
Afm — Bt [YJ Y"BT!" = B [Y+] YT T
where
—Im . R
Fl = ( - eXp(1¢>q)€m(rl) + (I)E—f—l,m—l(Tl)a 0 | T eXp(1¢)q)em(T2> + q)€+1,m—1(r2)7 0 PO
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—=Iim

.
Iy, = (]|0,exp(io)Pem (1) + Pos1m—1(m1) |,| 0, exp(ip) Prp (12) + Po1m—1(r2) |, - - ) :

~/

Since 4
B [V (Vv (T 1Y)
one arrives with . —
BA“ =A," + A"

at
—Im——fm —Im——fm —fm—=lm —Im—=lm

YA YA =Y I +Y L0,

im—¢ gim—tm .. . - -
Because the vectors Y ﬁAlm and Y_|T," lie in a vector space distinct to the one

im——tm Gim=tlm .
where Y_,A, and Y_,I'; are members of, one can solve the two equations

Im——~—tm —fm—=tfm

YA =Y, T, i=1,2
separately for Xfm. In doing so one has to deal with tridiagonal matrices only.

A" is obtained through A = BA™.
Finally, the short-time propagator for elliptic polarization (propagation mode
44) reads

0 - —tm1 Y —tm _ ~tm~t | =tm 1
Un(r) = ] (R“"BT [Yi } Y"BR™"B' {Y+ } Y. B) (116)
{=L—-2m=/{
L2 ¢ ~ t —fm 7176m~~£m —om1 - —em
«wi'wW_TT IT (8 {Yﬁ YUBR™B! VI YI'BR™
=0 m=—/(

where W, , W_ are given in (65).
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