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1 Introduction

This document contains the details which were omitted in the CPC-manuscript
for the sake of clarity. The short-time propagator for the case of linear po-
larization (propagation mode 34) and for the more demanding case of elliptic
polarization (propagation mode 44) are discussed in great detail. Their actual
implementation1 follows exactly the lines developed in this manual. We suggest
that the user reads the CPC-manuscript first.

1See member functions called by propagate() in wavefunction.cc.
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2 Time-dependent Schrödinger and Kohn-

Sham equation

The goal is to solve the time-dependent Kohn-Sham (TDKS) equation (atomic
units ~ = |e| = me = 4πε0 = 1 are used, unless noted otherwise)

i
∂

∂t
Ψiσ(r, t) =

(
1

2
[−i∇+ A(t)]2 + V (r) + r · E(t) + Veeσ[n↑,↓(r, t)]

)
Ψiσ(r, t) (1)

for the i = 1, . . . , Nσ Kohn-Sham (KS) orbitals Ψi(r, t) of spin σ =↑ and ↓,
respectively. The time-dependent Schrödinger equation for a single-electron sys-
tem in a laser field results from (1) by the simplification Veeσ[n↑,↓(r, t)] ≡ 0 and
Nσ = 1.

The two spin densities nσ(r, t) = n↑(r, t), n↓(r, t) and the total density n(r, t)
are given by

nσ(r, t) =
Nσ∑
i=1

|Ψiσ(r, t)|2, n(r, t) = n↑(r, t) + n↓(r, t). (2)

V (r) is the ionic background, e.g., −Z/r in the case of atoms or ions of charge
Z. The linearly polarized laser field is described in dipole approximation by the
vector potential A(t) = A(t)ez or by the electric field E(t) = E(t)ez, depending
on whether the velocity gauge or the length gauge is chosen. The electron-electron
interaction potential Veeσ[n↑,↓(r, t)] comprises the Hartree-part U [n(r, t)] and the
exchange-correlation potential Vxcσ[n↑,↓(r, t)],

Veeσ[n↑,↓(r, t)] = U [n(r, t)] + Vxcσ[n↑,↓(r, t)]. (3)

The Hartree potential

U [n(r, t)] =

∫
d3r′

n(r′)
|r− r′| (4)

is due to the mutual repulsion of all the electrons. In practice, the exchange-
correlation potential Vxcσ[n↑,↓(r, t)] has to be approximated. In time-dependent
density functional studies one commonly relies on expressions for Vxcσ that have
been successfully employed in static density functional calculations, i.e., Vxcσ is
simply calculated with the spin densities which are present at the certain time
instant.

Evaluating the square bracket in (1) a purely time-dependent term ∼ A2(t)/2
arises which can be transformed away by the substitution

Ψiσ(r, t) = exp

(
i

∫
A2(t)

2
dt

)
Ψ′

iσ(r, t). (5)
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Introducing

VI(t) = −iA(t)
∂

∂z
+ zE(t) (6)

one has

i
∂

∂t
Ψ′

iσ(r, t) =

(
−1

2
∇2 + VI(t) + V (r) + Veeσ[n↑,↓(r, t)]

)
Ψ′

iσ(r, t). (7)

We shall drop the ′ at the KS orbitals in what follows since the phase transfor-
mation (5) has no effect on any of the potentials and observables.

For what follows we make the following assumptions and approximations:

(A) The ionic potential is assumed spherical, V (r) = V (r),

(B) The total electron density is assumed spin-unpolarized, i.e.,

n↑(r, t) = n↓(r, t), n(r, t) = 2nσ(r, t), σ =↑, ↓, (8)

(C) For obtaining the ground state configuration the central field approximation
is applied, i.e., Veeσ[n](r) → Veeσ[n](r),

(D) With the linearly polarized laser on, Veeσ(r, t) is calculated up to the
quadrupole term, i.e.,

Veeσ[n] = Vee
0
σ(r, t) + Vee

1
σ(r, t) cos ϑ + Vee

2
σ(r, t)

1

2
(3 cos2 ϑ− 1). (9)

Note that assumption (B) is imposed only for simplicity. A generalization to
spin-polarized systems would be straight forward.

2.1 Expansion in spherical harmonics

The KS orbitals Ψiσ(r, t) are expanded in spherical harmonics Y m
` (Ω),

Ψiσ(r, ϑ, ϕ, t) =
1

r

∞∑

`=0

∑̀

m=−`

Φiσ`m(r, t)Y m
` (Ω). (10)

where Ω is the solid angle, defined by dΩ = sin ϑ dϑ dϕ. If the initial state has a
well-defined m-quantum number m = mi and the laser field is linearly polarized
along the quantization axis ez, mi remains a “good” quantum number and the
expansion (10) simplifies to

Ψiσ(r, ϑ, ϕ, t) =
1

r

∞∑

`=0

Φiσ`mi
(r, t)Y mi

` (Ω). (11)
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For the unperturbed atom the so-called central field approximation (CFA) is
usually adopted. This leads to ground state KS orbitals of the form

Ψiσ(r, ϑ, ϕ, 0) =
Φiσ`i

(r, t)

r
Y mi

`i
(Ω), (12)

having well-defined quantum numbers `i and mi with the radial function inde-
pendent of mi. As mentioned above, during the interaction with the linearly
polarized laser field in dipole approximation mi remains a “good” quantum num-
ber, i.e., no other m 6= mi will be populated thanks to the azimuthal symmetry
that is retained throughout the interaction with the laser field. However, the bro-
ken spherical symmetry introduces a mixing of angular momentum and renders
the radial wavefunction dependent on m. The KS equations become

i
∂

∂t
Φiσ`mi

(r, t) =

(
−1

2

∂2

∂r2
+ V eff

` (r)

)
Φi`mi

(r, t) (13)

−iA(t)r
∑

`′
〈Y mi

` | cos ϑ|Y mi

`′ 〉
∂

∂r

1

r
Φi`′mi

(r, t)

+iA(t)
∑

`′
〈Y mi

` | sin ϑ
∂

∂ϑ
|Y mi

`′ 〉
1

r
Φi`′mi

(r, t)

+rE(t)
∑

`′
〈Y mi

` | cos ϑ|Y mi

`′ 〉Φi`′mi
(r, t)

+
∑

`′
〈Y mi

` |Veeσ[nσ] + V (r)− V 0(r)|Y mi

`′ 〉Φi`′mi
(r, t)

where we suppressed the spin index σ. In the last four lines of (13) we made
use of the fact that the corresponding matrix elements contribute for m′ = m
only. V eff

` (r) is the effective ionic potential including the centrifugal barrier and

the spherical part V 0(r) of the ionic potential, V eff
` (r) = V 0(r) + `(`+1)

2r2 . In the
forthcoming section we specialize on spherical ionic potentials, i.e., atoms, ions,
or jellium clusters so that V (r) − V 0(r) = 0. Moreover, in CFA Veeσ[nσ] is
diagonal in ` and m. However, as the laser is switched on, the density n is not
spherical any longer, as is Veeσ[nσ]. A full multipole expansion of Veeσ[nσ] would
lead to a densely populated matrix 〈Y m

` |Veeσ[nσ]|Y m
`′ 〉. Hence, the efficiency of the

numerical scheme rises and falls with the possibility to terminate the multipole
expansion after a few terms.

Defining

c`m =

√
(` + 1)2 −m2

(2` + 1)(2` + 3)
(14)

one can write the matrix elements

r
∑

`′
〈Y mi

` | cos ϑ|Y mi

`′ 〉Φi`′mi
= r

(
c`−1,mi

Φi,`−1,mi
+ c`mi

Φi,`+1,mi

)
, (15)
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r
∑

`′
〈Y mi

` | cos ϑ|Y mi

`′ 〉
∂

∂r

1

r
Φi`′mi

=
(
c`−1,mi

∂

∂r
Φi,`−1,mi

+ c`mi

∂

∂r
Φi,`+1,mi

)

−
(c`−1,mi

r
Φi,`−1,mi

+
c`mi

r
Φi,`+1,mi

)
, (16)

and

∑

`′
〈Y mi

` | sin ϑ
∂

∂ϑ
|Y mi

`′ 〉
1

r
Φi`′mi

(17)

=
1

r

(
(`− 1)c`−1,mi

Φi,`−1,mi
− (` + 2)c`mi

Φi,`+1,mi

)
.

The matrix element 〈Y mi
` | cos ϑ|Y mi

`′ 〉 also appears when the dipole term
Vee

1
σ(r, t) cos ϑ is introduced into (13). The quadrupole term instead leads to

1

2

∑

`′
〈Y mi

` |3 cos2 ϑ− 1|Y mi

`′ 〉Φi`′mi
(18)

= p`mi
Φi`mi

+ q`−2,mi
Φi,`−2,mi

+ q`mi
Φi,`+2,mi

where

p`m =
`(` + 1)− 3m2

(2`− 1)(2` + 3)
, (19)

q`m =
3

2(2` + 3)

√
[(` + 1)2 −m2][(` + 2)2 −m2]

(2` + 1)(2` + 5)
. (20)

Inserting (9) into the TDKS equation (13) and using (15)–(18) one obtains

i
∂

∂t
Φi`mi

=

(
−1

2

∂2

∂r2
+ V eff

` (r) + V 0
ee(r, t) + p`mi

V 2
ee(r, t)

)
Φi`mi

(21)

−iA(t)
(
c`−1,mi

∂

∂r
Φi,`−1,mi

+ c`mi

∂

∂r
Φi,`+1,mi

−1

r
`c`−1,mi

Φi,`−1,mi
+

1

r
(` + 1)c`mi

Φi,`+1,mi

)

+
(
rE(t) + V 1

ee(r, t)
)(

c`−1,mi
Φi,`−1,mi

+ c`mi
Φi,`+1,mi

)

+V 2
ee(r, t)

(
q`−2,mi

Φi,`−2,mi
+ q`mi

Φi,`+2,mi

)
.

2.2 Expansion of the Hartree potential up to the
quadrupole

In the expansion (9) each term Vee
j
σ, j = 0, 1, 2, consists of the Hartree part U j

and the exchange-correlation part Vxc
j
σ.
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With the spin density (2) written as

nσ(r, t) =
1

r2

Nσ∑
i=1

∑

``′
Φ∗

i`′mi
(r, t)Φi`mi

(r, t)Y mi

`′
∗(Ω)Y mi

` (Ω) (22)

and the well-known identity

1

|r− r′| =
∑

`m

4π

2` + 1

r`
<

r`+1
>

Y m
`
∗(Ω)Y m

` (Ω′), (23)

where r< = min(r, r′), r> = max(r, r′), it can be shown that the Hartree potential
(4) is given by

U [n] = 2
∑

L

Y 0
L (Ω)

√
4π

2L + 1

∫
dr′

rL
<

rL+1
>

(24)

×
Nσ∑
i=1

∑

``′
Φ∗

i`′mi
(r′, t)Φi`mi

(r′, t)

√
2` + 1

2`′ + 1
C`′0

`0L0C
`′mi
`miL0.

Ccγ
aαbβ are the Clebsch-Gordan coefficients. Using the property C`′0

`0L0C
`′m
`mL0 =

2`′+1
2`+1

C`0
`′0L0C

`m
`′mL0 Eq. (24) can be written in the form

U [n] = 2
∑

L

Y 0
L (Ω)

√
4π

2L + 1

∫
dr′

rL
<

rL+1
>

Nσ∑
i=1

Λ̃L
ii(r

′, t) (25)

where we introduced the entities

Λ̃L
ji(r, t) = Λ̃

Lmj−mi

ji (r, t), (26)

Λ̃LM
ji (r, t) =

∑

``′

√
2` + 1

2`′ + 1
C`′0

`0L0C
`′mj

`miLMΦ∗
i`mi

(r, t)Φj`′mj
(r, t). (27)

Λ̃LM
ji (r, t) is a key expression and will appear frequently in our forthcoming dis-

cussion of the KLI exchange potential.
In terms of the auxiliary entities

Λ(r, t) = 2
Nσ∑
i=1

∑

`

|Φi`mi
(r, t)|2 = 2

Nσ∑
i=1

Λ̃0
ii(r, t), (28)

Θ(r, t) = 2
Nσ∑
i=1

∑

`

(
c`−1,mi

Φ∗
i,`−1,mi

+ c`mi
Φ∗

i,`+1,mi

)
Φi`mi

= 2
Nσ∑
i=1

Λ̃1
ii(r, t), (29)
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Ξ(r, t) = 2
Nσ∑
i=1

∑

`

(
p`mi

Φ∗
i`mi

+ q`mi
Φ∗

i,`+2,mi
+ q`−2,mi

Φ∗
i,`−2,mi

)
Φi`mi

= 2
Nσ∑
i=1

Λ̃2
ii(r, t) (30)

one obtains

U0(r, t) =

∫
dr′

1

r>

Λ(r′, t), (31)

U1(r, t) =

∫
dr′

r<

r2
>

Θ(r′, t), (32)

U2(r, t) =

∫
dr′

r2
<

r3
>

Ξ(r′, t). (33)

3 Propagation scheme for linear polarization

3.1 Breaking down the Hamiltonian

In this and the subsequent Section we essentially proceed in line with the work
by H.G. Muller [Laser Physics 9, 138 (1999)]. In matrix notation (21) may be
written as

i∂tΦ(r, t) =
(
Hat + Hmix + H(1)

ang + H(2)
ang + H(3)

ang

)
Φ(r, t) (34)

with

Hat = −1

2

∂2

∂r2
+ V`

eff + V 0
ee + p`mV 2

ee. (35)

In this Section we suppress the orbital index i of the quantum number m. It
is understood that the mi of the KS orbital on which the operator acts has to
be taken. Φ(r, t) = (Φ0m(r, t),Φ1m(r, t), . . .)> is a vector in `-space with the
quantum number m arbitrary but fixed, and, of course, only `s with ` ≥ |m| are
allowed. The matrices Hmix, H(1)

ang, H(2)
ang, and H(3)

ang are

Hmix = −iA(t)




0 c0m 0 0 · · ·
c0m 0 c1m 0
0 c1m 0 c2m
... c2m


 ∂r,

H(1)
ang = −i

A(t)

r




0 c0m 0 0 · · ·
−c0m 0 2c1m 0

0 −2c1m 0 3c2m
... −3c2m


 ,
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H(2)
ang =

(
rE(t) + V 1

ee(r, t)
)




0 c0m 0 0 · · ·
c0m 0 c1m 0
0 c1m 0 c2m
... c2m


 ,

H(3)
ang = V 2

ee(r, t)




0 0 q0m 0 · · ·
0 0 0 q1m

q0m 0 0
... q1m


 .

Each entry in the vector Φ(r, t) depends on r. In the code, r-space is discretized,

rn = n∆r, n = 1, 2, 3, . . . , Nr

so that our discrete “numerical” vector is of the form

Ψ(t) =
(

Φ1
0m(t), . . . , ΦNr

0m(t) , Φ1
1m(t), . . . , ΦNr

1m(t) , . . . , ΦNr
L−1,m(t)

)>
,

where Nr and L are the number of grid points in r- and `-space, respectively.
Now the different pieces of the total Hamiltonian,

H = Hat + Hmix + Hang, (36)

Hang = H(1,2)
ang + H(3)

ang, H(1,2)
ang = H(1)

ang + H(2)
ang,

operating in r- and `-space, will be analyzed.
Hat is diagonal in `-space, H(1,2)

ang and H(3)
ang are diagonal in r-space. Hmix is,

unfortunately, nowhere diagonal. The matrices Hmix and Hang can be written as
a sum of matrices acting in two-dimensional `, `+1 or `, `+2 subspaces only, for
example,




0 c0m 0 · · ·
c0m 0 c1m

0 c1m 0
. . .

...
. . .


 =




0 c0m 0
c0m 0 0
0 0 0


 +




0 0 0 · · ·
0 0 c1m

0 c1m 0


 + · · ·

One matrix in this series couples a certain angular momentum ` with ` + 1.
In what follows the corresponding Hamilton operator is labeled accordingly:

H`m
mix

(
Φ`m(r, t)

Φ`+1,m(r, t)

)
= −iA(t)

(
0 c`m

c`m 0

)
∂r

(
Φ`m(r, t)

Φ`+1,m(r, t)

)
, (37)

H(1,2)
ang

`m
(

Φ`m(r, t)
Φ`+1,m(r, t)

)
(38)

=

{
− iA(t)

r

(
0 t`m

−t`m 0

)
+

(
rE(t) + V 1

ee(r, t)
) (

0 c`m

c`m 0

)}(
Φ`m(r, t)

Φ`+1,m(r, t)

)
,
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where

t`m = (` + 1)

√
(` + 1)2 −m2

(2` + 1)(2` + 3)
, (39)

and

H(3)
ang

`m
(

Φ`m(r, t)
Φ`+2,m(r, t)

)
= V 2

ee(r, t)

(
0 q`m

q`m 0

)(
Φ`m(r, t)

Φ`+2,m(r, t)

)
. (40)

Spatial derivatives with respect to the radius r are present in Hat and Hmix.
The Numerov and Simpson approximants to the second and first derivative of a
function f(r) are

f ′′ = −2M−1
2 ∆2f, f ′ = M−1

1 ∆1f, (41)

respectively, where ∆2f = (fn+1 − 2fn + fn−1)/h
2, h = ∆r, ∆1f = (fn+1 −

fn−1)/2h, and

M2 = −1

6




10 1 0 · · ·
1 10 1
0 1 10 1
...


 , M1 =

1

6




4 1 0 · · ·
1 4 1
0 1 4 1
... ·


 . (42)

M2 and M2 operate on f = (f1, f2, . . . , fNr)
>. Applied to our problem, the matri-

ces M1, M2, ∆1, ∆2 act in r-space, i.e., on all `-blocks Φ`(t) = (Φ1
`(t), Φ

2
`(t), . . .)

>

independently.
The upper left matrix elements of M2 and ∆2 have to be modified because

(42) would imply f ′′(r0) = 0 (note that r0 is not part of the grid). However, for
a Coulomb-potential −Z/r and ` = 0 at r0 = 0

Φ′′
0(0, t) = −2ZΦ′

0(0, t) 6= 0

holds. Moreover, one has to ensure the Hermiticity of M̃
−1

2 ∆̃2 in order not to
destroy unitary propagation. Both may be achieved by modifying the upper left
matrix elements,

(∆̃2)1,1 = − 2

h2

(
1− Zh

12− 10Zh

)
,

(M̃2)1,1 = −2

(
1 +

h2

12
(∆̃2)1,1

)
.

The corner elements of ∆1 and M1 have to be modified as well because the

operator M̃
−1

1 ∆̃1 must be anti-Hermitian for a unitary time propagation. Writing

M̃1 =
1

6




4 + x 1
1 4 1

· · ·
1 4 + x′


 , ∆̃1 =

1

2h




y 1
−1 0 1

· · ·
−1 y′



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one finds that with x =
√

3 − 2, x′ = y = x and y′ = −y anti-Hermiticity of

M̃
−1

1 ∆̃1 is ensured.
To summarize, we write the different contributions to the total Hamilton as

follows:

H = Hat +
L−2∑

`=0

(
H`m

mix + H(1,2)
ang

`m
+ H(3)

ang

`m
)

, (43)

Hat = 1` ⊗
(
M̃
−1

2 ∆̃2 + V`
eff + V 0

ee + p`mV 2
ee

)
, (44)

H`m
mix = −iA(t)L`m ⊗ M̃

−1

1 ∆̃1, (45)

H(1,2)
ang

`m
= −iA(t)T`m ⊗ 1

rn

1r + L`m ⊗
(
rnE(t) + V 1

ee(rn, t)
)
1r, (46)

H(3)
ang

`m
= P`m ⊗ V 2

ee(rn, t)1r, (47)

where 1` and 1r are unity matrices in `- and r-space, respectively, and

L`m =

(
0 c`m

c`m 0

)
, T`m =

(
0 t`m

−t`m 0

)
, P`m =

(
0 q`m

q`m 0

)
. (48)

Note that L`m and T`m act on `, ` + 1-sub blocks while P`m acts on `, ` + 2-sub
blocks.

3.2 Approximating the time evolution operator

For a sufficiently small time step

U(t + ∆t, t) = exp(−i∆tH(t + ∆t/2))

is a good approximation to the exact propagator, i.e., Ψ(t + ∆t) = U(t +
∆t, t)Ψ(t). With the Hamiltonian (43) an approximation, accurate up to sec-
ond order in ∆t, is given by

Usplit(t + ∆t, t) =
0∏

`=L−3

exp(−iτH(3)
ang

`m
)

×
0∏

`=L−2

(
exp(−iτH(1,2)

ang

`m
) exp(−iτH`m

mix)
)

× exp(−i∆tHat)

×
L−2∏

`=0

(
exp(−iτH`m

mix) exp(−iτH(1,2)
ang

`m
)
)

×
L−3∏

`=0

exp(−iτH(3)
ang

`m
) (49)
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with τ = ∆t/2. The unitary Crank-Nicolson (CN) approximant to exp(−i∆tH)
is

exp(−i∆tH) = (1 + i∆tH/2)−1(1− i∆tH/2) + O(∆t)3

so that

Usplit(t + ∆t, t) ≈ UCN(t + ∆t, t) (50)

=
0∏

`=L−3

Z`m
n

0∏

`=L−2

(
R`m

n

[
X`m

+

]−1

X`m
−

)
Q−1

+ Q−

×
L−2∏

`=0

([
X`m

+

]−1

X`m
− R`m

n

) L−3∏

`=0

Z`m
n

where

R`m
n =

(
1 + i

τ

2
H(1,2)

ang

`m
)−1 (

1− i
τ

2
H(1,2)

ang

`m
)

, (51)

X`m
± = 1± i

τ

2
H`m

mix, Q± = 1± iτHat, (52)

Z`m
n =

(
1 + i

τ

2
H(3)

ang

`m
)−1 (

1− i
τ

2
H(3)

ang

`m
)

. (53)

R`m
n can be evaluated using Eq. (46):

H(1,2)
ang

`m
=

(
0 sn`m

s∗n`m 0

)
(54)

with

sn`m = − iA(t)

rn

t`m +
(
rnE(t) + V 1

ee(rn, t)
)
c`m (55)

leads to

R`m
n =

1

1 + |wn`m|2
(

1− |wn`m|2 −2wn`m

2w∗
n`m 1− |wn`m|2

)
, (56)

wn`m = i
τ

2
s`m =

τ

2

(
A(t)

rn

t`m + i
(
rnE(t) + V 1

ee(rn, t)
)
c`m

)
. (57)

For Z`m
n one obtains

Z`m
n =

1

1 + |vn`m|2
(

1− |vn`m|2 −2vn`m

2v∗n`m 1− |vn`m|2
)

, (58)

vn`m = i
τ

2
V 2

ee(rn) q`m. (59)

Let us now turn to the factor
[
X`m

+

]−1

X`m
− which involves `, ` + 1-sub blocks

and a non-diagonality in r. We factor-out M̃
−1

1 and write

[
X`m

+

]−1

X`m
− =

[
Y`m

+

]−1
Y`m
− , Y`m

± = 1` ⊗ M̃1 ± τ

2
A(t)L`m ⊗ ∆̃1. (60)
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The matrices Y`m
± are not tridiagonal but block-tridiagonal only:

Y`m
± =




4+x
6

±yg`m
1
6

±g`m

±yg`m
4+x

6
±g`m

1
6

1
6

∓g`m
2
3

1
6

±g`m

∓g`m
1
6

2
3

±g`m
1
6

1
6

∓g`m
2
3

1
6

±g`m

∓g`m
1
6

2
3

±g`m
1
6

· · ·
· · ·

1
6

∓g`m
4+x

6
∓yg`m

∓g`m
1
6

∓yg`m
4+x

6




with g`m = τA(t)c`m/4h. The rank of these matrices is 2Nr. It operates on
vectors of the form

Γ`m =
(

Φ`m(r1, t), Φ`+1,m(r1, t) , Φ`m(r2, t), Φ`+1,m(r2, t) , . . .
)>

.

The matrices Y`m
± can be transformed into a sum of two tridiagonal matrices Y

`m

1±
and Y

`m

2±, acting in two distinct vector spaces. Since

BL`mB> =

(
c`m 0
0 −c`m

)
, B =

1√
2

(
1 1
−1 1

)

one obtains
Y

`m

± = (B⊗ 1r)Y
`m
± (B⊗ 1r)

> = Y
`m

1± + Y
`m

2± (61)

with

Y
`m

1± =




4+x
6
± yg`m 0 1

6
± g`m 0

0 0 0 0 0 0
1
6
∓ g`m 0 2

3
0 1

6
± g`m 0

0 0 0 0 0 0
. . . . . .

1
6
∓ g`m 0 4+x

6
∓ yg`m 0

0 0 0 0




,

Y
`m

2± =




0 0 0 0
0 4+x

6
∓ yg`m 0 1

6
∓ g`m

0 0 0 0 0 0
0 1

6
± g`m 0 2

3
0 1

6
∓ g`m

. . . . . .

0 0 0 0
0 1

6
± g`m 0 4+x

6
± yg`m




.
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The vector Γ`m transforms accordingly,

Γ`m = (B⊗ 1r)Γ`m = Γ1`m + Γ2`m (62)

where

Γ1`m =
1√
2




Φ1
`m + Φ1

`+1,m

0
Φ2

`m + Φ2
`+1,m

0
...

ΦNr
`m + ΦNr

`+1,m

0




, Γ2`m =
1√
2




0
−Φ1

`m + Φ1
`+1,m

0
−Φ2

`m + Φ2
`+1,m

...
0

−ΦNr
`m + ΦNr

`+1,m




. (63)

Now it is easy to see that

Y
`m

± Γ`m = (Y
`m

1± + Y
`m

2±)(Γ1`m + Γ2`m) = Y
`m

1±Γ1`m + Y
`m

2±Γ2`m,

because the matrices Y
`m

1±, Y
`m

2± operate in distinct spaces.
Finally, the factor Q−1

+ Q− in (50) may be written as

Q−1
+ Q− = W−1

+ W− (64)

with
W± = 1` ⊗ M̃2 ± iτ1` ⊗

(
∆̃2 + M̃2(V

`
eff + V 0

ee + p`mV 2
ee)

)
. (65)

The matrices W± are already diagonal in ` and tridiagonal in r and thus need no
further treatment.

The short-time propagator for linear polarization (propagation mode 34) fi-
nally reads

UCN(t + ∆t, t) =
0∏

`=L−3

Z`m
n

0∏

`=L−2

(
R`m

n (B⊗ 1r)
>
[
Y

`m

+

]−1

Y
`m

− (B⊗ 1r)

)

×W−1
+ W− (66)

×
L−2∏

`=0

(
(B⊗ 1r)

>
[
Y

`m

+

]−1

Y
`m

− (B⊗ 1r)R
`m
n

) L−3∏

`=0

Z`m
n .

3.3 Calculation of rL
</rL+1

> -integrals

The integrals (31)–(33) are of the general form

FL(r) =

∫
dr′

rL
<

rL+1
>

f(r′), r< = min(r, r′), r> = max(r, r′). (67)
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Integrals of the same kind will also appear further below when the KLI exchange
potential is evaluated. Using the simple trapezoidal rule for numerical integration
this translates to

FL
j = FL

j + FL
j , (68)

FL
j =

j−1∑
i=0

∆rfi
rL
i

rL+1
j

, FL
j =

Nr−1∑
i=j

∆rfi

rL
j

rL+1
i

. (69)

The FL
j s can be calculated recursively,

FL
j+1 =

rL+1
j

rL+1
j+1

FL
j + ∆rfj

rL
j

rL+1
j+1

, FL
j+1 =

rL
j+1

rL
j

FL
j −∆rfj

rL
j+1

rL+1
j

. (70)

3.4 Exchange-correlation potential

There is a variety of approximations to the unknown exchange-correlation poten-
tial Vxcσ[n] in ground state DFT. In practice, the same functionals are often used
in TDDFT, i.e., the stationary ground state KS orbitals are simply replaced by
their time-dependent equivalents. In this paper we will discuss the implemen-
tation of the exchange potential proposed by Krieger, Li, and Iafrate (KLI) (cf.
CPC-manuscript).

So-called “optimized effective potential” (OEP) methods take the exchange
energy

Ex = −1

2

∑
σ

Nσ∑

j,k=1

∫
d3r

∫
d3r′

Ψ∗
jσ(r)Ψ∗

kσ(r′)Ψjσ(r′)Ψkσ(r)

|r− r′| (71)

exactly into account. The OEP method has been also extended to TDDFT.
However, the OEP method yields a complicated integral equation for the exchange
potential Vx. This OEP integral equation is impracticable for actual numerical
implementations, especially in the time-dependent case. Krieger, Li, and Iafrate
(KLI) proposed a method to solve the OEP integral equation approximately. The
numerical KLI results yield highly accurate ionization potentials, for instance.

The KLI potential is given by

V KLI
xσ (r) = V S

xσ(r) + Ṽxσ(r) (72)

where

Ṽxσ(r) =
Nσ−1∑
i=1

|Ψiσ(r)|2
nσ(r)

Qiσ, (73)

Qiσ = 〈V KLI
xσ 〉iσ − 〈uxiσ〉iσ, (74)

uxiσ(r) =
1

Ψ∗
iσ(r)

δEx

δΨiσ(r)
= −

Nσ∑
j=1

Ψ∗
jσ(r)

Ψ∗
iσ(r)

∫
d3r′

Ψ∗
iσ(r′)Ψjσ(r′)
|r− r′| , (75)

14



and

V S
xσ(r) =

Nσ∑
i=1

|Ψiσ(r)|2
nσ(r)

<uxiσ(r) (76)

is the Slater potential. < denotes the real part. 〈X〉iσ is the spatial average of
an entity X(r) weighted by the orbital spin density |Ψiσ(r)|2,

〈X〉iσ =

∫
d3r |Ψiσ(r)|2X(r).

As mentioned above, it is understood that in the time-dependent version of KLI
all arguments (r) are replaced by (r, t).

For calculating the ground state, uxiσ can be chosen real, so that < may be
dropped in (76). The sum in (72) excludes the highest occupied orbital since it
can be shown that

〈V KLI
xσ 〉Nσσ = 〈uxiσ〉Nσσ. (77)

The numbers 〈V KLI
xσ 〉iσ in (72) are calculated by solving the matrix equation

Nσ−1∑
i=1

(δji −Mjiσ)Qiσ = 〈V S
xσ〉jσ − 〈uxjσ〉jσ (78)

with

Mjiσ =

∫
d3r

|Ψjσ(r)|2|Ψiσ(r)|2
nσ(r)

(79)

for Qiσ.

3.5 Calculation of V S
xσ(r) and Ṽxσ(r)

Using (11), (23), and the Clebsch-Gordan coefficients Ccγ
aαbβ, the Slater potential

may be written as

V S
xσ(r) = − 1√

4πr2nσ(r)

Nσ∑
i,j=1

∑

LL̃`

∑

MM̃m

(−1)M 2L̃ + 1√
2` + 1

C`0
L0L̃0

C`m
LML̃M̃

(80)

×Λ̃L̃M
ji

∗
(r)

∫
dr′

rL
<

rL+1
>

Λ̃LM
ji (r′)Y m

` (Ω)

where

Λ̃LM
ji (r) =

∑

``′

√
2` + 1

2`′ + 1
C`′0

`0L0C
`′mj

`miLMΦ∗
i`mi

(r)Φj`′mj
(r). (81)
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Note that only M = mj −mi, M̃ = −M , and m = 0 contribute to the sums over
M , M̃ , and m so that (80) can be reduced to

V S
xσ(r) = − 1√

4πr2nσ(r)

Nσ∑
i,j=1

∑

LL̃`

(−1)mj−mi
2L̃ + 1√
2` + 1

C`0
L0L̃0

C`0
Lmj−miL̃mi−mj

×Λ̃
L̃mj−mi

ji

∗
(r)

∫
dr′

rL
<

rL+1
>

Λ̃
Lmj−mi

ji (r′)Y 0
` (Ω) (82)

with Λ̃L
ji := Λ̃

Lmj−mi

ji . In passing we note that Λ(r) = 2
∑Nσ

i=1 Λ̃0
ii(r) since Ccγ

aα00 =
δacδαγ.

Expression (82) gives us a multipole expansion of nσ(r)V S
xσ(r). However, an

expansion of V S
xσ(r) itself is needed in our numerical scheme. Hence, the factor

nσ(r)−1 should, in principle, also be expanded in spherical harmonics, making
the multipole expansion of V S

xσ(r) even more complicated. We thus, in this work,
restrict ourselves to KLI in central field approximation (CFA). Note that the CFA
is a prerequisite to obtain ground state KS orbitals of the form (12) at all.

In CFA, expression (82), upon neglecting all terms with ` > 0 and replacing
nσ(r) by nσ(r) = Λ(r)/(8πr2) with Λ(r) according (28) (remember assumption
(B), Eq. (8)), simplifies to

V S
xσ

0
(r) = − 2

Λ(r)

Nσ∑
i,j=1

∑
L

Λ̃L
ji

∗
(r)

∫
dr′ Λ̃L

ji(r
′)

rL
<

rL+1
>

(83)

(note that C00
aαbβ = (−1)a−αδabδα−β/

√
2a + 1).

If one is just interested in the ground state Slater potential of closed-shell
systems, (80) can be significantly simplified further. Making use of the form (12)
for the ground state KS orbitals, rewriting sums over all orbitals like

Nσ∑
i=1

· · · =
Nshells∑

i=1

`i∑

mi=−`i

· · · (84)

with i running over the different `-shells now, and making use of the unitarity
relation for Clebsch-Gordan coefficients2 one arrives at

V S
xσ

gs
(r) = − 2

Λ(r)

Nσ∑
i,j=1

Φiσ`i
(r)Φ∗

jσ`j
(r) (85)

×
∑

L

[
C

`j0
`i0L0

]2

2`j + 1

∫
dr′ Φ∗

iσ`i
(r′)Φjσ`j

(r′)
rL
<

rL+1
>

2When relations like
∑

αβ Ccγ
aαbβCc′γ′

aαbβ = δcc′δγγ′ are used it is less error-prone to start with
expressions like (80) where the sums over M , M̃ , and m are still retained.
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where we revoked (84) for both i and j, e.g., (2`i +1)
∑Nshells

i=1 =
∑Nσ

i=1. The upper
index 0 at V S

xσ (indicating the monopole term) has been dropped since closed-shell
systems are exactly spherical. Note that the main steps that lead to (85) relied
on the fact that the sums over mi and nj were complete (closed shells) and that
the radial wave functions do not depend on mi and mj (spherical symmetry).

For Ṽxσ(r) one finds

Ṽxσ(r) =
1√

4πr2nσ(r)
=

Nσ−1∑
i=1

Qiσ

∑
L

√
2L + 1 Λ̃L

ii(r) Y 0
L (Ω), (86)

Ṽ 0
xσ(r) =

2

Λ(r)

Nσ−1∑
i=1

QiσΛ̃0
ii(r), (87)

and

Ṽ gs
xσ(r) =

2

Λ(r)

Nσ−1∑
i=1

Qiσ|Φiσ`i
(r)|2 (88)

with Qiσ given by (74).

3.6 Calculation of 〈uxjσ〉jσ, 〈V S
xσ〉jσ, and Mjiσ

By performing a very similar calculation as in the previous section for V S
xσ(r) one

obtains

〈uxjσ〉jσ = −
Nσ∑

k=1

∑
L

∫
dr Λ̃L

kj

∗
(r)

∫
dr′ Λ̃L

kj(r
′)

rL
<

rL+1
>

, (89)

and for the ground state

〈uxjσ〉gs
jσ = −

Nσ∑

k=1

∑
L

[
C`k0

`j0L0

]2

2`k + 1

∫
dr Φjσ`j

(r)Φ∗
kσ`k

(r) (90)

×
∫

dr′ Φ∗
jσ`j

(r′)Φkσ`k
(r′)

rL
<

rL+1
>

.

For 〈V S
xσ〉jσ

〈V S
xσ〉jσ = −

∫
dr

2

Λ(r)

Nσ∑

i,k=1

∑

LL̃`

Λ̃`
jj

∗
(r)(2` + 1)CL̃0

L0`0C
L̃mk−mi

Lmk−mi`0
(91)

×Λ̃L̃
ki

∗
(r)

∫
dr′

rL
<

rL+1
>

Λ̃L
ki(r

′) (92)
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and

〈V S
xσ〉gs

jσ = −
∫

dr
2

Λ(r)
|Φjσ`j

(r)|2
Nσ∑

i,k=1

Φiσ`i
(r)Φ∗

kσ`k
(r) (93)

×
∑

L

[
C`k0

`i0L0

]2

2`k + 1

∫
dr′ Φ∗

iσ`i
(r′)Φkσ`k

(r′)
rL
<

rL+1
>

are obtained.
The matrix elements (79) are given by

Mjiσ =

∫
dr

2

Λ(r)

∑
L

(2L + 1) Λ̃L
jj

∗
(r) Λ̃L

ii

∗
(r) (94)

and simplify in the case of closed-shell ground state systems to

Mgs
jiσ = M̃gs

jiσ

∑
L

(2L + 1) C
`j0
`j0L0C

`jmj

`jmjL0C
`i0
`i0L0C

`imi
`imiL0 (95)

where

M̃gs
jiσ =

∫
dr

2

Λ(r)
|Φjσ`j

(r)|2|Φiσ`i
(r)|2. (96)

An alternative expression reads

Mgs
jiσ = M̃gs

jiσ

∑
LM

(2`j + 1)(2`i + 1)

2L + 1

[
CL0

`j0`i0

]2 [
CLM

`j−mj`imi

]2

. (97)

Although expressions (95) and (97) depend on the m-quantum numbers mj and
mi the right hand side of (78) must not depend on these in the case of closed-shell
ground state systems. In fact, since QiNσ = 0, both Qiσ and M̃gs

jiσ are independent
of mi,

Nσ∑
i=1

Mgs
jiσQ

gs
iσ =

Nshells∑
i=1

∑
mi

Mgs
jiσQ

gs
iσ,

∑
mi

∑
M

[
CLM

`j−mj`imi

]2

=
2L + 1

2`j + 1
,

and
∑

L(CL0
`j0`i0

)2 = 1 one easily verifies that

Nσ∑
i=1

Mgs
jiσQ

gs
iσ =

Nσ∑
i=1

M̃gs
jiσQ

gs
iσ. (98)

Thus, for calculating the ground state of closed-shell systems one can use M̃gs
jiσ

instead of the more complex Mgs
jiσ for solving the matrix equation (78).
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4 Circular polarization: working in (r, `,m)-

space

In the case of a circularly polarized laser field the vector potential has (at least)
two components. If the ionic potential has spherical symmetry and the dipole
approximation can be applied one may choose the vector potential as

A(t) = Ax(t)ex + Ay(t)ey. (99)

The time-dependent Schrödinger equation then reads

i∂tΨ(r, t) =

(
−1

2
∇2 + V (r)− iAx(t)∂x − iAy(t)∂y

)
Ψ(r, t). (100)

After an expansion in spherical harmonics one obtains

i∂tΦ`m =

(
−1

2

∂2

∂r2
+ V eff

` (r)

)
Φ`m (101)

− ir

2

∑

`′m′
〈`m|[exp(iϕ)Ã∗ + exp(−iϕ)Ã] sin ϑ|`′m′〉∂r

1

r
Φ`′m′

− i

2r

∑

`′m′
〈`m|[exp(iϕ)Ã∗ + exp(−iϕ)Ã] cos ϑ∂ϑ|`′m′〉Φ`′m′

− i

2r

∑

`′m′
〈`m|[exp(iϕ)Ã∗ − exp(−iϕ)Ã]

i

sin ϑ
∂ϕ|`′m′〉Φ`′m′

=

(
−1

2

∂2

∂r2
+ V eff

` (r)

)
Φ`m

− ir

2

∑

`′m′
〈`m|[exp(iϕ)Ã∗ + exp(−iϕ)Ã] sin ϑ|`′m′〉∂r

1

r
Φ`′m′

− i

2r

∑

`′m′
〈`m|Ã∗ exp(iϕ)

(
cos ϑ∂ϑ +

i

sin ϑ
∂ϕ

)
|`′m′〉Φ`′m′

− i

2r

∑

`′m′
〈`m|Ã exp(−iϕ)

(
cos ϑ∂ϑ − i

sin ϑ
∂ϕ

)
|`′m′〉Φ`′m′ ,

where |`m〉 = |Y m
` 〉 and Ã = Ax + iAy have been introduced. If the ladder

operators L̂± are defined as

L̂± = − 1√
2

exp(±iϕ) (∂ϑ ± i cot ϑ∂ϕ) (102)

they act on a spherical harmonic according

L̂±|`m〉 = ∓N±
`m|`m± 1〉 (103)
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where

N±
`m =

√
`(` + 1)−m(m± 1)

2
=

√
(`∓m)(`±m + 1)

2
.

This may be used to rewrite the time-dependent Schrödinger equation as

i∂tΦ`m =

(
−1

2

∂2

∂r2
+ V eff

` (r)

)
Φ`m

+i

√
2π

3

∑

`′m′

{
Ã∗〈`m|11|`′m′〉∂r − Ã〈`m|1− 1|`′m′〉∂r (104)

−Ã∗

r
〈`m|11|`′m′〉(1 + m′) +

Ã

r
〈`m|1− 1|`′m′〉(1−m′)

−Ã∗

r
〈`m|10|`′m′ + 1〉N+

`′m′ +
Ã

r
〈`m|10|`′m′ − 1〉N−

`′m′

}
Φ`′m′

with 〈`m|LM |`′m′〉 =

∫
dΩ Y m

`
∗Y M

L Y m′
`′ . Three spherical harmonics integrated

over the solid angle Ω may be expressed in terms of Clebsch-Gordan coefficients
Ccγ

aαbβ,

〈`m|LM |`′m′〉 =

∫
dΩ Y m

`
∗Y M

L Y m′
`′ =

√
(2L + 1)(2`′ + 1)

4π(2` + 1)
C`0

`′0L0C
`m
`′m′LM .

The Clebsch-Gordon coefficients arising from the terms in (104) are quite simple
and couple neighboring `s and ms only,

〈`m|11|`′m′〉 =

√
3

4π
δm,m′+1

(
δ`,`′+1

√
(` + m− 1)(` + m)

2(2`− 1)(2` + 1)

−δ`,`′−1

√
(`−m + 1)(`−m + 2)(` + 1)

(2` + 1)(2` + 2)(2` + 3)

)
,

〈`m|1− 1|`′m′〉 =

√
3

4π
δm,m′−1

(
δ`,`′+1

√
(`−m− 1)(`−m)

2(2`− 1)(2` + 1)

−δ`,`′−1

√
(` + m + 1)(` + m + 2)(` + 1)

(2` + 1)(2` + 2)(2` + 3)

)
,

〈`m|10|`′m′ + 1〉 =

√
3

4π
δm,m′+1

(
δ`,`′+1

√
(` + m)(`−m)

(2`− 1)(2` + 1)

+δ`,`′−1

√
(` + m + 1)(`−m + 1)

(2` + 1)(2` + 3)

)
,
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〈`m|10|`′m′ − 1〉 =

√
3

4π
δm,m′−1

(
δ`,`′+1

√
(` + m)(`−m)

(2`− 1)(2` + 1)

+δ`,`′−1

√
(` + m + 1)(`−m + 1)

(2` + 1)(2` + 3)

)
.

Using those results one arrives at

i∂tΦ`m =
(
−1

2
∂2

∂r2
+ V eff

` (r)
)

Φ`m (105)

+
i
2

∑

`′m′

{
Ã∗δm,m′+1δ`,`′+1

√
` + m

(2` + 1)(2`− 1)
×

×
[(

∂r − m

r

)√
` + m− 1

−1
r

√
(`−m)(`(`− 1)−m(m− 1))

]

+Ã∗δm,m′+1δ`,`′−1

√
`−m + 1

(2` + 1)(2` + 3)
×

×
[
−

(
∂r − m

r

)√
`−m + 2

−1
r

√
(` + m + 1)((` + 1)(` + 2)−m(m− 1))

]

+Ãδm,m′−1δ`,`′+1

√
`−m

(2` + 1)(2`− 1)
×

×
[
−

(
∂r +

m

r

)√
`−m− 1

+
1
r

√
(` + m)(`(`− 1)−m(m + 1))

]

+Ãδm,m′−1δ`,`′−1

√
` + m + 1

(2` + 1)(2` + 3)
×

×
[(

∂r +
m

r

)√
` + m + 2

+
1
r

√
(`−m + 1)((` + 1)(` + 2)−m(m + 1))

] }
Φ`′m′

which may be written as
i∂tΦ = HΦ
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where
H = Hat + Hmix + Hang, (106)

like in (36). Hat is diagonal in (`, m)-space while Hang is diagonal in r. The matrix
components of Hat, Hmix, and Hang are given by3

[Hat]
`′m′
`m = δ`,`′δm,m′

(
−1

2

∂2

∂r2
+ V eff

` (r)

)
, (107)

[Hang]
`′m′
`m = 1r ⊗

(
A`mδm,m′+1δ`,`′+1 + B`mδm,m′+1δ`,`′−1 (108)

+Ã`mδm,m′−1δ`,`′+1 + B̃`mδm,m′−1δ`,`′−1

)
,

[Hmix]
`′m′
`m =

(
C`mδm,m′+1δ`,`′+1 +D`mδm,m′+1δ`,`′−1 (109)

+C̃`mδm,m′−1δ`,`′+1 + D̃`mδm,m′−1δ`,`′−1

)
∂r

with

A`m = Ã∗
`−m =

iÃ∗

2r

√
` + m

(2` + 1)(2`− 1)

[
−m

√
` + m− 1

−
√

(`−m)(`(`− 1)−m(m− 1))

]
,

Ã`m = A∗
`−m =

iÃ

2r

√
`−m

(2` + 1)(2`− 1)

[
−m

√
`−m− 1

+
√

(` + m)(`(`− 1)−m(m + 1))

]
,

B`m = B̃∗`−m =
iÃ∗

2r

√
`−m + 1

(2` + 1)(2` + 3)

[
m
√

`−m + 2

−
√

(` + m + 1)((` + 1)(` + 2)−m(m− 1))

]
,

B̃`m = B∗`−m =
iÃ

2r

√
` + m + 1

(2` + 1)(2` + 3)

[
m
√

` + m + 2

+
√

(`−m + 1)((` + 1)(` + 2)−m(m + 1))

]

3The radius r is taken nondiscretized for the moment.

22



C`m = C̃∗`−m =
iÃ∗

2

√
(` + m)(` + m− 1)

(2` + 1)(2`− 1)
,

C̃`m = C∗`−m = − iÃ

2

√
(`−m)(`−m− 1)

(2` + 1)(2`− 1)
,

D`m = D̃∗
`−m = − iÃ∗

2

√
(`−m + 1)(`−m + 2)

(2` + 1)(2` + 3)
,

D̃`m = D∗
`−m =

iÃ

2

√
(` + m + 1)(` + m + 2)

(2` + 1)(2` + 3)
.

The Hamiltonian Hat acts on each m-component of the wave function separately.
The wave function may be represented as a vector

Φ =
(

Φ00 , Φ1−1, Φ10, Φ11 , Φ2−2, Φ2−1, Φ20, Φ21, Φ22 , . . . , . . . , ΦLL−1, ΦLL

)>

where the `-subblocks are indicated with boxes, and the discretized value of r is
fixed.4 In this representation Hang reads

4Since Hang is diagonal in r-space there is no need to indicate the value of r. Hang simply
must be applied to each r-subblock.
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H
a
n
g

=

                                

00
1
−1

10
11

2
−2

2
−1

20
21

22
3
−3

3
−2

3
−1

30
31

32
33

00
B 0

0
B̃ 0

0

1
−1

Ã 1
−1

B 1
−1

B̃ 1
−1

10
B 1

0
B̃ 1

0

11
A 1

1
B 1

1
B̃ 1

1

2
−2

Ã 2
−2

B 2
−2

B̃ 2
−2

2
−1

Ã 2
−1

B 2
−1

B̃ 2
−1

20
A 2

0
Ã 2

0
B 2

0
B̃ 2

0

21
A 2

1
B 2

1
B̃ 2

1

22
A 2

2
B 2

2
B̃ 2

2

3
−3

Ã 3
−3

3
−2

Ã 3
−2

3
−1

A 3
−1

Ã 3
−1

30
A 3

0
Ã 3

0

31
A 3

1
Ã 3

1

32
A 3

2

33
A 3

3

                                

.
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h
m

at
ri

x
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en

t
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ft
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is
ze

ro
.

H
ow

th
e

b
u
si

n
es

s
co

n
ti

n
u
es

fo
r

`
>

3
is

ob
v
io

u
s.

T
h
e

“m
ix

in
g

H
am

il
to

n
ia

n
”

lo
ok

s
si

m
il
ar

ly
,
w

it
h
A

re
p
la

ce
d

b
y
C,

an
d
B

w
it

h
D,

b
u
t

w
it

h
an

ad
d
it

io
n
al

op
er

at
or

∂
r
.

B
ot

h
H

a
n
g

an
d

H
m

ix
m

ay
b
e

w
ri

tt
en

as
a

su
m

ov
er

2
×

2-
m

at
ri

ce
s

ac
ti

n
g

in
(`

,m
)-

su
b
sp

ac
e,

H
a
n
g

=
L
−2 ∑ `=
0

∑̀ m
=
−`

{ H
`m a
n
g
+

H̃
`m a
n
g

} ,
H

m
ix

=
L
−2 ∑ `=
0

∑̀ m
=
−`

{ H
`m m

ix
+

H̃
`m m

ix

} ,
(1

10
)

w
it

h

H
`m a
n
g

=
i|Ã
|

2r

 
`m

`
+

1,
m
−

1
`m

0
ex

p
(−

iφ
)b

`m

`
+

1,
m
−

1
ex

p
(i
φ
)ã

`+
1
,m
−1

0

 
,

H̃
`m a
n
g

=
i|Ã
|

2r

 
`m

`
+

1,
m

+
1

`m
0

ex
p
(i
φ
)b̃

`m

`
+

1,
m

+
1

ex
p
(−

iφ
)a

`+
1
,m

+
1

0

 
,

(1
11

)
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H`m
mix = − i|Ã|

2




`m ` + 1,m− 1
`m 0 exp(−iφ)d`m

` + 1,m− 1 exp(iφ)c̃`+1,m−1 0


⊗ ∂r,

H̃
`m

mix =
i|Ã|
2




`m ` + 1,m + 1

`m 0 exp(iφ)d̃`m

` + 1,m + 1 exp(−iφ)c`+1,m+1 0


⊗ ∂r,

where

a`m =

√
` + m

(2` + 1)(2`− 1)

[
−m

√
` + m− 1−

√
(`−m)(`(`− 1)−m(m− 1))

]
,

ã`m =

√
`−m

(2` + 1)(2`− 1)

[
−m

√
`−m− 1 +

√
(` + m)(`(`− 1)−m(m + 1))

]
,

b`m =

√
`−m + 1

(2` + 1)(2` + 3)

[
m
√

`−m + 2−
√

(` + m + 1)((` + 1)(` + 2)−m(m− 1))
]

= −ã`+1,m−1,

b̃`m =

√
` + m + 1

(2` + 1)(2` + 3)

[
m
√

` + m + 2 +
√

(`−m + 1)((` + 1)(` + 2)−m(m + 1))
]

= −a`+1,m+1,

c`m =

√
(` + m)(` + m− 1)

(2` + 1)(2`− 1)
= c̃`,−m = d̃`−1,m−1,

c̃`m =

√
(`−m)(`−m− 1)

(2` + 1)(2`− 1)
= c`,−m = d`−1,m+1,

d`m =

√
(`−m + 1)(`−m + 2)

(2` + 1)(2` + 3)
= d̃`,−m,

d̃`m =

√
(` + m + 1)(` + m + 2)

(2` + 1)(2` + 3)
= d`,−m,

and the phase φ is defined through

Ã = |Ã| exp(iφ).

H`m
ang and H̃

`m

ang may be rewritten as

H`m
ang =

i|Ã|
2r

b`m




`m ` + 1,m− 1
`m 0 exp(−iφ)

` + 1,m− 1 − exp(iφ) 0




︸ ︷︷ ︸
P`m

, (112)
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H̃
`m

ang =
i|Ã|
2r

b̃`m




`m ` + 1,m + 1
`m 0 exp(iφ)

` + 1,m + 1 − exp(−iφ) 0




︸ ︷︷ ︸
˜P

`m

. (113)

H`m
mix and H̃

`m

mix may be simplified as well:

H`m
mix = − i|Ã|

2
d`m




`m ` + 1,m− 1
`m 0 exp(−iφ)

` + 1,m− 1 exp(iφ) 0




︸ ︷︷ ︸
L

⊗∂r, (114)

H̃
`m

mix =
i|Ã|
2

d̃`m




`m ` + 1,m + 1
`m 0 exp(iφ)

` + 1,m + 1 exp(−iφ) 0




︸ ︷︷ ︸
˜L

⊗∂r. (115)

A Crank-Nicolson propagator UCN which advances the wavefunction over
∆t = 2τ may be chosen as follows:

UCN(τ) =
0∏

`=L−2

−∏̀

m=`

(
1 + i

τ

2
H`m

ang

)−1 (
1− i

τ

2
H`m

ang

) (
1 + i

τ

2
H`m

mix

)−1 (
1− i

τ

2
H`m

mix

)

×
(
1 + i

τ

2
H̃

`m

ang

)−1 (
1− i

τ

2
H̃

`m

ang

)

︸ ︷︷ ︸
˜R

`m

(
1 + i

τ

2
H̃

`m

mix

)

︸ ︷︷ ︸
˜X

`m

+

−1 (
1− i

τ

2
H̃

`m

mix

)

︸ ︷︷ ︸
˜X

`m

−

×(1 + iτHat)︸ ︷︷ ︸
Q+

−1 (1− iτHat)︸ ︷︷ ︸
Q−

×
L−2∏

`=0

∏̀

m=−`

(
1 + i

τ

2
H̃

`m

mix

)−1 (
1− i

τ

2
H̃

`m

mix

)(
1 + i

τ

2
H̃

`m

ang

)−1 (
1− i

τ

2
H̃

`m

ang

)

×
(
1 + i

τ

2
H`m

mix

)

︸ ︷︷ ︸
X`m

+

−1 (
1− i

τ

2
H`m

mix

)

︸ ︷︷ ︸
X`m

−

(
1 + i

τ

2
H`m

ang

)−1 (
1− i

τ

2
H`m

ang

)

︸ ︷︷ ︸
R`m

=
0∏

`=L−2

−∏̀

m=`

(
R`m

[
X`m

+

]−1
X`m
− R̃

`m
[
X̃

`m

+

]−1

X̃
`m

−

)

×Q−1
+ Q−

L−2∏

`=0

∏̀

m=−`

([
X̃

`m

+

]−1

X̃
`m

− R̃
`m [

X`m
+

]−1
X`m
− R`m

)

As in the simpler (r, `)-case it is helpful to break the different factors of UCN
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down into digestible pieces:

[
X`m

+

]−1

X`m
− =

(
1 +

τ |Ã|d`m

4
L⊗ M̃

−1

1 ∆̃1

)−1 (
1− τ |Ã|d`m

4
L⊗ M̃

−1

1 ∆̃1

)

=

(
1`m ⊗ M̃1 +

τ |Ã|d`m

4
L⊗ ∆̃1

)

︸ ︷︷ ︸
Y`m

+

−1 (
1`m ⊗ M̃1 − τ |Ã|d`m

4
L⊗ ∆̃1

)

︸ ︷︷ ︸
Y`m

−

,

[
X̃

`m

+

]−1

X̃
`m

− =

(
1− τ |Ã|d̃`m

4
L̃⊗ M̃

−1

1 ∆̃1

)−1 (
1 +

τ |Ã|d̃`m

4
L̃⊗ M̃

−1

1 ∆̃1

)

=

(
1`m ⊗ M̃1 − τ |Ã|d̃`m

4
L̃⊗ ∆̃1

)

︸ ︷︷ ︸
˜Y

`m

+

−1 (
1`m ⊗ M̃1 +

τ |Ã|d̃`m

4
L̃⊗ ∆̃1

)

︸ ︷︷ ︸
˜Y

`m

−

,

Q−1
+ Q− =

(
1 + iτ1`m ⊗ (M̃

−1

2 ∆̃2 + V`
eff)

)−1(
1− iτ1`m ⊗ (M̃

−1

2 ∆̃2 + V`
eff)

)

= 1`m ⊗
(
M̃2 + iτ(∆̃2 + M̃2V

`
eff)

)

︸ ︷︷ ︸
W+

−1

1`m ⊗
(
M̃2 − iτ(∆̃2 + M̃2V

`
eff)

)

︸ ︷︷ ︸
W−

.

Let us first evaluate R`m and R̃
`m

, respectively,

R`m = (1− ξb`mP`m)−1(1 + ξb`mP`m), ξ =
τ |Ã|
4r

=
1

1 + ξ2b2
`m

(
1− ξ2b2

`m 2ξ exp(−iφ)b`m

−2ξ exp(iφ)b`m 1− ξ2b2
`m

)
,

R̃
`m

=
1

1 + ξ2b̃2
`m

(
1− ξ2b̃2

`m 2ξ exp(iφ)b̃`m

−2ξ exp(−iφ)b̃`m 1− ξ2b̃2
`m

)
.

Next,

Y`m
± =

(
M̃1 ± ζd`mL∆̃1

)
, ζ =

τ |Ã|
4

,

Ỹ
`m

± =
(
M̃1 ∓ ζd̃`mL̃∆̃1

)

are tackled. Observing that with

B =
1√
2

( − exp(iφ) 1
exp(iφ) 1

)
, B−1 = B† =

1√
2

( − exp(−iφ) exp(−iφ)
1 1

)

and

B̃ =
1√
2

( − exp(−iφ) 1
exp(−iφ) 1

)
, B̃

−1
= B̃

†
=

1√
2

( − exp(iφ) exp(iφ)
1 1

)

27



one has

BLB† = B̃L̃B̃
†
=

( −1 0
0 1

)

it follows that

[
Y`m

+

]−1
Y`m
− = B†B

[
Y`m

+

]−1
B†BY`m

− B†B

= B†
[
BY`m

+ B†
]−1

BY`m
− B†B

= B†
[
M̃1 + ζd`m

( −1 0
0 1

)
∆̃1

]

︸ ︷︷ ︸
Y

`m

+

−1 [
M̃1 − ζd`m

( −1 0
0 1

)
∆̃1

]

︸ ︷︷ ︸
Y

`m

−

B,

[
Ỹ

`m

+

]−1

Ỹ
`m

− = B̃
†
[
M̃1 − ζd̃`m

( −1 0
0 1

)
∆̃1

]

︸ ︷︷ ︸
˜Y

`m

+

−1 [
M̃1 + ζd̃`m

( −1 0
0 1

)
∆̃1

]

︸ ︷︷ ︸
˜Y

`m

−

B̃

where the explicit indication of subspaces (i.e., the symbols 1`m and ⊗) was
suppressed since it is clear in which spaces the matrices act. Like in the (r, `)-case

one may break the matrices Y
`m

± , Ỹ
`m

± down into a sum of two tridiagonal matrices
acting in distinct vector spaces. Looking, for example, at one (`m; ` + 1,m− 1)-
subblock it is seen that

( −1 0
0 1

)
∆̃1 =

1

2h




−y −1
y 1

1 −1
−1 1

1 −1
−1 1

1 y
−1 −y




where, just for illustration, the radial coordinate was discretized with four points
only. Therefore, with ζ ′ = ζ/2h one finds

Y
`m
± =

0
BBBBBBBBBBB@

4+x
6
∓ yζ′d`m

1
6
∓ ζ′d`m

4+x
6
± yζ′d`m

1
6
± ζ′d`m

1
6
± ζ′d`m

2
3

1
6
∓ ζ′d`m

1
6
∓ ζ′d`m

2
3

1
6
± ζ′d`m

1
6
± ζ′d`m

2
3

1
6
∓ ζ′d`m

1
6
∓ ζ′d`m

2
3

1
6
± ζ′d`m

1
6
± ζ′d`m

4+x
6
± yζ′d`m

1
6
∓ ζ′d`m

4+x
6
∓ yζ′d`m

1
CCCCCCCCCCCA

,
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Ỹ
`m

± =

0
BBBBBBBBBBB@

4+x
6
± yζ′d̃`m

1
6
± ζ′d̃`m

4+x
6
∓ yζ′d̃`m

1
6
∓ ζ′d̃`m

1
6
∓ ζ′d̃`m

2
3

1
6
± ζ′d̃`m

1
6
± ζ′d̃`m

2
3

1
6
∓ ζ′d̃`m

1
6
∓ ζ′d̃`m

2
3

1
6
± ζ′d̃`m

1
6
± ζ′d̃`m

2
3

1
6
∓ ζ′d̃`m

1
6
∓ ζ′d̃`m

4+x
6
∓ yζ′d̃`m

1
6
± ζ′d̃`m

4+x
6
± yζ′d̃`m

1
CCCCCCCCCCCA

,

where the result for Ỹ
`m

± is the same as the one for Y
`m

± but with the replacements

± → ∓, ∓ → ±, and d`m → d̃`m. However, one must not forget that Ỹ
`m

± acts in
the (`m; ` + 1,m + 1)-subspace.

One may introduce the splitting

Y
`m

± = Y
`m

±1 + Y
`m

±2, Ỹ
`m

± = Ỹ
`m

±1 + Ỹ
`m

±2

where

Y
`m
±1 =




4+x
6 ∓ yζ ′d`m 0 1

6 ∓ ζ ′d`m 0
0 0 0 0

1
6 ± ζ ′d`m 0 2

3 0 1
6 ∓ ζ ′d`m 0

0 0 0 0 0 0
1
6 ± ζ ′d`m 0 2

3 0 1
6 ∓ ζ ′d`m 0

0 0 0 0 0 0
1
6 ± ζ ′d`m 0 4+x

6 ± yζ ′d`m 0
0 0 0 0




,

Y
`m
±2 =




0 0 0 0
0 4+x

6 ± yζ ′d`m 0 1
6 ± ζ ′d`m

0 0 0 0 0 0
0 1

6 ∓ ζ ′d`m 0 2
3 0 1

6 ± ζ ′d`m

0 0 0 0 0 0
0 1

6 ∓ ζ ′d`m 0 2
3 0 1

6 ± ζ ′d`m

0 0 0 0
0 1

6 ∓ ζ ′d`m 0 4+x
6 ∓ yζ ′d`m




,

and Ỹ
`m

±1,2 accordingly. Let us check how, for example, B†
[
Y

`m

+

]−1

Y
`m

− B acts on

the wavefunction vector

Γ`m =
(

Φ`m(r1), Φ`+1,m−1(r1) , Φ`m(r2), Φ`+1,m−1(r2) , . . .
)>

,

corresponding to the (`m)-subblock under consideration. One finds

Λ`m = B†
[
Y

`m

+

]−1

Y
`m

− BΓ`m = B†
[
Y

`m

+

]−1

Y
`m

− (Γ
`m

1 + Γ
`m

2 )

where

Γ
`m

1 =
(
− exp(iφ)Φ`m(r1) + Φ`+1,m−1(r1), 0 , − exp(iφ)Φ`m(r2) + Φ`+1,m−1(r2), 0 , . . .

)>
,
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Γ
`m

2 =
(

0, exp(iφ)Φ`m(r1) + Φ`+1,m−1(r1) , 0, exp(iφ)Φ`m(r2) + Φ`+1,m−1(r2) , . . .
)>

.

Since

B†
[
Y

`m

+

]−1 (
Y

`m

−1 + Y
`m

−2

)(
Γ

`m

1 + Γ
`m

2

)

one arrives with
BΛ`m = Λ

`m

1 + Λ
`m

2

at
Y

`m

+1Λ
`m

1 + Y
`m

+2Λ
`m

2 = Y
`m

−1Γ
`m

1 + Y
`m

−2Γ
`m

2 .

Because the vectors Y
`m

+1Λ
`m

1 and Y
`m

−1Γ
`m

1 lie in a vector space distinct to the one

where Y
`m

+2Λ
`m

2 and Y
`m

−2Γ
`m

2 are members of, one can solve the two equations

Y
`m

+i Λ
`m

i = Y
`m

−i Γ
`m

i , i = 1, 2

separately for Λ
`m

i . In doing so one has to deal with tridiagonal matrices only.

Λ`m is obtained through Λ`m = B†Λ
`m

.
Finally, the short-time propagator for elliptic polarization (propagation mode

44) reads

UCN(τ) =
0∏

`=L−2

−∏̀

m=`

(
R`mB†

[
Y

`m

+

]−1

Y
`m

− BR̃
`m

B̃
†
[
Ỹ

`m

+

]−1

Ỹ
`m

− B̃

)
(116)

×W−1
+ W−

L−2∏

`=0

∏̀

m=−`

(
B̃
†
[
Ỹ

`m

+

]−1

Ỹ
`m

− B̃R̃
`m

B†
[
Y

`m

+

]−1

Y
`m

− BR`m

)
,

where W+, W− are given in (65).
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