

Promotionskolloquium

Am Dienstag, dem 01.10.2019, verteidigt um 15:00 Uhr im Hörsaal des Departments LL&M

Herr MSc Abdullah Riaz (Experimentalphysik)

seine Dissertation zum Thema:

"Pseudo piezoelectricity in calcium titanate and structural changes under electric field"

Abstract

Perovskite polycrystalline calcium titanate has orthorhombic crystal structure at room temperature and belongs to the centro-symmetric point group. This implies that calcium titanate does not exhibit piezoelectric behaviour. However, in the present study such behaviour is observed in calcium titanate prepared by sol-gel synthesis and densified by field assisted sintering technique. Presumably, the instability of regular TiO_6 octahedra results in the off-centering of titanium positions in nanostructured bulk calcium titanate. This phenomenon leads to the breaking of crystal symmetry causing the generation of electric dipoles. These electric dipoles are created due to the lattice distortions produced by the formation of highly localized defects, i.e. oxygen vacancies, during densification by field assisted sintering. As a consequence, piezoelectric behaviour is observed in calcium titanate which is referred to "pseudo piezoelectricity". Additionally, in-situ high energy X-ray diffraction study revealed domains switching under external electric field. The contribution of non-180° domains reorientation has also been observed. These structural responses testify the observed pseudo piezoelectric behaviour in calcium titanate. The produced charge (Q) and the average piezoelectric constant (d_{33}) values of field assisted sintered calcium titanate have been determined to be Q = (2.7±0.5) pC and $d_{33} \sim 0.595$ pm/V, respectively. The mentioned average piezoelectric constant d_{33} value is comparable with the piezoelectric constant d_{ij} values of natural bone. This particular response of calcium titanate is of great interest in biomedicine because it can improve osseointegration of implant materials.

Zusammenfassung

Polykristallines Calciumtitanat hat bei Raumtemperatur eine orthorhombische Kristallstruktur (Perovskitstruktur). Aufrund seiner zentrosymmetrischen Elementarzelle zeigt Calciumtitanat kein piezoelektrisches Verhalten. Die vorliegende Arbeit weist jedoch piezoelektrisches Verhalten von Calciumtitanat nach, das mittels Sol-Gel Synthese hergestellt und mittels Feld-Aktiviertem Sintern (FAST) verdichtet wurde. Vermutlich verursacht die Instabilität regulärer TiO_6 Oktaeder eine Verschiebung der Positionen von Titanatomen in Festkörpern aus nanostrukturiertem Calciumtitanat. Dieses Phänomen verursacht die Verletzung der Kristallsymmetrie und erzeugt elektrische Dipole. Die Dipole entstehen aufgrund von Gitterverzerrungen, die durch stark lokalisierte Defekte – Sauerstoff-Leerstellen - während des Feld-Aktivierten Sinterns auftreten. Daher kann piezoelektrisches Verhalten, genannt "Pseudopiezoelektrizität", in Calciumtitanat beobachtet werden. Außerdem konnte in in-situ Hochenergieröntgendiffraktionsmessungen das Umklappen von Domänen unter Einfluss eines externen elektrischen Feldes beobachtet werden. Auch der Beitrag von Umklappen urn von 180° verschiedene Winkel wurde nachgewiesen. Diese strukturelle Antwort auf das externe elektrische Feld bestätigt das beobachtete piezoelektrische Verhalten von Calciumtitanat. Erzeugte Ladung (Q) und piezoelektrische Konstante (d_{33}) wurden zu $Q = (2.7 \pm 0.5)$ pC und $d_{33} \sim 0.595$ pm/V bestimmt. Der Durchschnittswert für die piezoelektrische Konstante d_{33} ist vergleichbar mit den Werten für d_{ij} in natiirlichem Knochen. Dieses Ergebnis ist von großem Interesse für biomedizinische Anwendungen zur Verbesserung der Osseointegration von Implantatmaterialien.

Interessenten sind herzlich eingeladen!

Prof. Dr. R. Redmer Promotionsbeauftragter