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(PD Reinhard Mahnke, LV 11572, see below) points of view.

About the contents:

1. Basic concepts of deterministic dynamics
(02.04.2008, R. Mahnke)
Defining dynamical system by n-dimensional state space (or phase
space) and a mapping including set of control parameters as causal re-
lationship. Time-discrete dynamics as iterated maps; time-continuous
dynamics as coupled set of ordinary differential equations, always to-
gether with initial conditions. Dynamical system has unique solution
called trajectory. Topological consequences like expanding/contracting
or conservative dynamics are investigated within the so-called qualitati-
ve theory of dynamical system. Important classes are: Gradient system,
canonical-dissipative system. Stability of regular or irregular (chaotic)
motion measured by Ljapunov exponents.

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/Markov290408.pdf


2. Qualitative theory of dynamical systems (09.04.2008, R. Mahn-
ke)
Recalling the definition of a dynamical system (x, T ) consisting of an
n–dimensional state space x and a nonlinear discrete or continuous
mapping T together with initial conditions. Examples are iterations,
Newtonian dynamics, Hamiltonian canonical equations, overdamped
motion in a potential field, etc. Key words in the qualitative theory (in
distinction to the exact trajectory solution) are: stationary or steady
state solutions (fixed point, periodic orbit), separatrix, saddle point, re-
gion of attraction, linear stability analysis (with respect to small chan-
ges), Ljapunov exponents, chaotic attractor, . . .

3. Examples of low–dimensional dynamical systems (16.04.2008,
R. Mahnke)
The following home works should be performed (till 21.04.2008):

(a) Mathematical pendulum ([1], Chap. 2)

d

dt
α =

pα
ml2

(1)

d

dt
pα = −mgl sinα (2)

�Kerstin Witte

(b) Chairoplane ([1], Chap. 3)

d

dt
α =

pα
ml2

(3)

d

dt
pα = ml2ω2

0[− sinα + Ω(A+ sinα) cosα] (4)

�Karsten Dittrich

(c) Van der Pol–oscillator ([1], Chap. 6.1)

d

dt
x = x− y − x(x2 + y2) (5)

d

dt
y = x+ y − y(x2 + y2) (6)

�Siegfried Sobkowiak

(d) Predator–prey–dynamics, Lotka–Volterra–system ([1], Chap. 6.2)

d

dt
x = k1Ax− k12xy (7)

d

dt
y = k21xy − k2y (8)



�Sebastian Dittrich

(e) Three species food chain ([1], Chap. 6.7, and [2])

d

dt
x = R0x

(
1− x

K0

)
− C1F1(x)y (9)

d

dt
y = F1(x)y − F2(y)z −D1y (10)

d

dt
z = C2F2(y)z −D2z (11)

�Hannes Hartmann

(f) Lorenz model ([1], Chap. 6.5)

d

dt
x = s(y − x) (12)

d

dt
y = rx− y − xz (13)

d

dt
z = xy − bz (14)

�Arian–Christoph Pfahl

(g) Logistic mapping ([1], Chap. 8.1)

xn+1 = rxn(1− xn) (15)

�Alko Schurr + Jan Trautmann

(h) Brusselator ([1], Chap. 12.4)

R1 → X (16)

R2 +X → Y + F1 (17)

2X + Y → 3X (18)

X → F (19)

�Lennart Forck

(i) Schlögl reaction ([1], Chap. 13)

A+ 2X � 3X (20)

X � F (21)

�Michael Kelbg



(j) Magnitskii’s ODE–system ([3], Example 2)

ẋ1 = µx1 − νx2 − x2
1x

2
3 (22)

ẋ2 = νx1 + µx2 − x1x2x
2
3 (23)

ẋ3 = x2
1 + x2

2 + x2
3 − σx3 (24)

�Johannes Knebel + Falk Töppel

4. Presentations I (22.04.2008, R. Mahnke)
The following home works have been presented by students:

(a) Kerstin Witte: Mathematical pendulum
Lagrange function, Hamiltonian, equations of motion, initial con-
ditions, conservation of mechanical energy, general trajectory, pha-
se diagram showing four different cases (equilibrium, libration, se-
paratrix, rotation), dynamics on separatrix, fixed points

(b) Karsten Dittrich: Chairoplane
Gravitational and centrifugal forces, dimensionless control para-
meters, potential energy (calculated from total energy), discussion
of different cases (monostability, bistability)

(d) Sebastian Dittrich: Predator–prey–dynamics
Lotka model, extension to Lotka–Volterra system, two fixed points
and their stability analysis (hyperbolic refers to extinction; elliptic
means oscillations between predator and prey)

5. Langevin equation I (23.04.2008, R. Mahnke)
Adding a white noise term (stochastic part) to the one–dimensional
dynamical system (deterministic part), this generates a stochastic dif-
ferential equation known as Langevin equation. This empirical equation
consisting of a drift and a diffusion part together with the initial con-
dition has a formal solution as stochastic trajectory. A special case
without drift is called Wiener process or white noise. The properties of
the noise are given by mean value and correlation function. The dou-
ble well potential which corresponds to a cubic deterministic force is
of special interest to get the moments of the stochastic process, the
correlator as well as the response. An outlook to the Fokker–Planck
equation related to the discussed Langevin equation is given.

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/a_Math_Pendel_Witte.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/b_Kettenkarussell_K_Dittrich.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/d_Lotka-Volterra_Gl_S_Dittrich.pdf


6. Presentations II (29.04.2008, Ch. Liebe)
The following home works have been presented by students:

(c) Siegfried Sobkowiak: Van der Pol–oscillator
Historical background, general behaviour, discussion of two special
cases (ε = 0 and z2 � 1), detailed discussion of transformed
version for ε = 1 (analytical solution, graphical presentation of
solution)

(e) Hannes Hartmann: Three species food chain
General discussion of the problem, introduction of the logistical
differential equation, short discussion of predator–prey–dynamics,
detailed discussion of the three species food chain and presenta-
tion of numerical results (Maple) (three examples: eating rate of
predators is zero, stable fix point solution, solution with chaotic
attractor)

(j) Johannes Knebel + Falk Töppel: Magnitskii’s ODE–system
Short introduction to Magnitskii’s ODE–system, detailed presen-
tation of numerical results (MatLab), with fixed initial values and
fixed control parameters except µ, one can show that the gene-
ral shape of the attractor strongly depends on the parameter µ,
changing the initial values can lead to a singularity

(h) Lennart Forck: Brusselator
Short historical introduction, derivation and formulation of the
kinetic equations, discussion of the equilibrium point and its sta-
bility, presentation of numerical results (program written in C)
showing repelling and attractive behaviour of the fixed point

7. Presentations III (30.04.2008, Ch. Liebe)
The following home works have been presented by students:

(f) Arian–Christoph Pfahl: Lorenz–model
Historical introduction, description of an experiment, analytical
discussion of the equations, stationary solutions and bifurcation,
fixing two parameters and varying the third one leads to Lorenz
attractor, other examples for Lorenz–model

(i) Michael Kelbg: Schlögl–reaction
Historical introduction, formulation of the equations, transforma-
tion leads to a nonlinear differential equation, interpretation as a
force leads to potential, stationary solutions (bistable or mono-
stable depending on the parameter), graphical presentation of the
results, connection to Van der Waals gas

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/c_Van_der_Pol_Sobkowiak.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/e_Nahrungskette_Hartmann.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/j_dynODE_Knebel+Toeppel.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/h_Bruesselator_Forck.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/f_Lorenz-Gleichungen_Pfahl.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/i_Schloegl-modell_Kelbg.pdf


(g) Alko Schurr + Jan Trautmann: Logistic mapping
Historical introduction, derivation of a demographic model to pre-
dict the development of a population, transformation to decrease
number of parameters, changing a parameter defined between zero
and four leads to different long time results, deterministic chaos,
islands of order, graphical presentation of numerical results

8. Seminar about home works (06.05.2008, R. Mahnke)
The following exercises have been discussed:

(a) Consider a Langevin particle starting at x(t = 0) = x0 under the
influence of a given drift function f(x) = −αx− βx3 as well as a
given diffusion as white noise ξ(t) or Wiener process dW (t). Cal-
culate the central tendency as mean or average of that stochastic
process.

(b) Calculate the stationary solution and explain the supercritical bi-
furcation by changing the control parameters α and β. How does
the subcritical bifurcation differ from the supercritical one?

9. Langevin equation II (07.05.2008, R. Mahnke)
Extension of a deterministic differential equation by a stochastic for-
ce (additive white noise) gives the Langevin equation. Important as
equivalent description of stochastic trajectories is the Fokker–Planck
equation, which shows the development of the probability density of
a stochastic drift–diffusion process. Discussing two different situations
depending on the highest order force term xn: (a) n = 3, supercritical
bifurcation (2nd order phase transition, double well potential);

dx =
(
−αx− βx3

)
dt+ σ dW (t) (25)

(b) n = 5, subcritical bifurcation (1st order phase transition with jumps
and hysteresis). Investigating the simplest case (without deterministic
force) and the simple case (linear force, n = 1) in detail including
numerical hints for simulation technique.

Study of Langevin dynamics with linear force (monostability) given by

dv(t)

dt
= −αv(t) + σξ(t) ; v(t = 0) = v0 . (26)

Stochastic trajectory as exact solution is obtained

v(t) = v0 exp (−αt) + σ exp (αt)

∫ t

0

exp (−αs) ξ(s)ds . (27)

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_NichtlinDynSyst_April/g_Log_Abb_Schurr+Trautmann.pdf


The time dependent first moment is given as

〈v(t)〉 = v0 exp (−αt)→ 0 if t→∞ . (28)

The time dependent second moment is given as

〈v(t)2〉 = v2
0 exp (−2αt) +

σ2

2α
(1− exp (−2αt)) . (29)

We get for the variance

〈v(t)2〉 − 〈v(t)〉2 =
σ2

2α
(1− exp (−2αt))→ σ2

2α
if t→∞ . (30)

Fluctuation–dissipation theorem holds in equilibrium

σ2

2α
=
kBT

m
from

〈m
2
v2
〉

=
kBT

2
. (31)

2dim linear extension (coordinate–velocity space) including special case
D = 0 called Ornstein–Uhlenbeck process

dx = v dt+
√

2DdW (t) (32)

dv = −γv dt+
√

2B dW (t) (33)

2dim extension in coordinate–velocity space: oscillator model with noise

dx = v dt (34)

dv = −ω2
0x dt− γv dt+

√
2B dW (t) (35)

10. Langevin equation III (13.05.2008, R. Mahnke)
The Brownian gas model as a system of many Brownian particles with
interaction is considered. The dynamics of this many–body system is
given as a set of Langevin equations. Usually thermal equilibrium is
treated where the fluctuation–dissipation theorem (Einstein relation)
is valid and the canonical distribution holds. The overdamped limit
neglecting momenta is discussed. The concept of active Brownian par-
ticles is introduced. Taking into account a velocity–dependent damping
function instead of constant friction coefficient in the Langevin equati-
on the Brownian particles are called active ones. Typical models with
short–range interaction (named next neighbour) are Morse or Toda ring
chains with periodic boundary conditions. These models exhibit new
phenomena like clustering effects.



11. Langevin equation IV (14.05.2008, R. Mahnke)
As extension of additive white noise term the Langevin equation with
multiplicative noise (state dependent fluctuations) is introduced. De-
pending on the point of integration the stochastic differential equation
is of different type called Ito (left border of integration interval), Stra-
tonovich (middle) or Hänggi–Klimontovich (right). The relationship to
the general corresponding Fokker–Planck equation is given as well as
the transformation rules for drift and diffusion terms. Finally a special
case called geometric Brownian motion in Ito notation is considered in
comparison to the arithmetic Brownian development.

12. Fokker–Planck equation I (20.05.2008, R. Mahnke)
One of the fundamental dynamical expressions for Markovian processes
is the Fokker–Planck equation (FPE) in its forward and backward no-
tation. Discussing the multi–dimensional forward FPE written as conti-
nuity equation and the corresponding backward FPE together with the
same delta–like initial condition in both cases. Taking into account bor-
ders we consider the one–dimensional bounded drift–diffusion problem
in a finite interval with a reflecting (left) and an absorbing (right) wall
and state that both Fokker–Planck dynamics with the corresponding
boundary conditions are equivalent and give the same result.

13. Fokker–Planck equation II (21.05.2008, R. Mahnke)
We consider the typical one–dimensional exit problem of a Browni-
an particle (drift–diffusion dynamics) from a bounded domain, whose
boundary is usually reflecting except for an absorbing window. The
escape problem and its solution is given by the outflow function as
first passage time probability density. The first moment is called mean
first passage time (MFPT) whereas the inverse is known as escape or
breakdown rate. The MFPT tells us how long does it take in the ave-
rage to move from the initial value inside the interval to the right open
boundary taking into account the left reflecting wall. The result for
the dynamics with constant drift as well as constant diffusion is shown
graphically.

14. Performing Projects I (27.05.2008, all students)
Given tasks to solve as project at home:

(a) Random numbers → Mathias Richter
Although a computer is a deterministic machine, it is possible
to create good random numbers with it. Describe at least one
algorithm to create equally distributed random numbers with a



computer. Implement this algorithm in a language of your choi-
ce. Describe at least two algorithms to create standard normal
distributed random numbers out of equally distributed random
numbers. Implement these algorithms in a language of your choi-
ce and compare the quality of the produced random numbers and
the efficiency of the algorithms.

(b) Ornstein–Uhlenbeck process → Arian–Christoph Pfahl
The Ornstein-Uhlenbeck process is defined in the coordinate–velo-
city space by the following differential equations

dx = v dt (36)

dv = −γv dt+
√

2B dW (t) (37)

with x(t = 0) = x0 and v(t = 0) = v0.
The same system can be described by a Fokker-Planck equation

∂

∂t
p(x, v, t) = − ∂

∂x
[vp(x, v, t)] +

∂

∂v
[γvp(x, v, t)] +

∂2

∂v2
[Bp(x, v, t)]

(38)
with initial condition

p(x, v, t = 0) = δx−x0δv−v0 (39)

Solve this system temporally for stochastic trajectories as well as
for probability density (use Fourier transformation method) and
discuss the overdamped limit as approximative result.

(c) Geometric Brownian motion → Falk Töppel
Start with the following stochastic differential equation in Ito no-
tation

dx(t) = a x(t)dt+ b x(t)dW (t) ; x(t = 0) = x0 > 0 (40)

and investigate as much as possible (list of proposals: solution as
stochastic trajectory for different cases including critical situati-
on a = b2/2, moments, variance, transformation to other notati-
ons like Stratonovich and Hänggi–Klimontovich type, probability
density as log–normal distribution, relationship to Black–Scholes
theory and diffusion equation). Hint: see Ref. [5].

(d) Brownian motion in monostable and bistable potential→
Johannes Knebel



Consider a phase transition model given by the following stocha-
stic Langevin equation

dx(t)

dt
= −αx(t)− β x(t)3 + σ ξ(t) ; x(t = 0) = x0 (41)

setting β ≥ 0 and turning the rate α from positive (monostability)
over zero (critical case) to negative values (bistability).

Due to cubic nonlinearity (β > 0) a complete analytic solution
x(t) is probably impossible. Repeat the calculations to get the
first moment known as noisefree solution

〈x(t)〉 =


x0 e

−αt : β = 0 ,

±
(
x−2

0 + 2βt
)−1/2

: β > 0 , α = 0 ,

±
√

(−α/β)
[
1−

(
1 + x−2

0 α/β
)
e2αt
]−1

: β > 0 , α 6= 0 .

(42)
and show the merging of one solution into the other when the
control parameter α is changing.

The main task is to get the mean square displacement known as
second moment 〈x(t)2〉 (or variance 〈x(t)2〉 − 〈x(t)〉2) as solution
of a better mean field equation as we did.

Explain the relaxation into equilibrium (α > 0) and into non-
equilibrium (α < 0) with respect to mean value and variance
and calculate the fluctuation–dissipation ratio (follow MECO33
contribution by Malte Henkel et al. [6]).

(e) The drunken sailor:
Discrete random walk in one dimension → Alko Schurr
Study the stochastic motion by discrete probabilistic jumps on
an (asymmetrically) Galton board. Start with the historical back-
ground at the life time of Sir Francis Galton. Explain the binomial
distribution.

Entwickeln Sie die diskrete Beschreibung der Zufallsbewegung ei-
ner Kugel, die durch ein Galton–Brett fällt. Die elementaren Hüpf-
wahrscheinlickeiten p und q = 1−p seien durch die Geometrie des
Galtonschen Glückspielautomaten gegeben. Betrachen Sie auch
die beiden Spezialfälle p = q = 1/2 (Symmetrie, reine Diffusi-
on)und p = 0 bzw. p = 1 (totale Asymmetrie, reine Drift).

Lassen Sie sowohl die Hüpfzeit τ als auch die Sprungweite a gegen
Null gehen. Führen Sie bei diesem Grenzprozess zwei neue endliche
Parameter D (Diffusionskoeffizient) und v (Driftkoeffizient) ein.



Berechnen Sie in dieser Kontinuumsgrenze den Drift–Diffusions–
Prozess als Lösung einer partiellen Differentialgleichung (Fokker–
Planck–Gleichung).

See H. Haken: Synergetik, Springer–Verlag, Berlin, div. Auflagen
ab 1977 (or [7]) and J. Vollmer: Chaos, spatial extension, trans-
port, and non-equilibrium thermodynamics, Physics Reports 372,
Dec. 2002, pp. 131–267, see: Chap 1–3 (pp. 131–163).

(f) A drunken sailor close to quay → Hannes Hartmann
In this task we shall continue the discussion of the problem of
random walk in one dimension but with certain restrictions on
the motion of the particle introduced by the presence of reflecting
or absorbing walls. Consider the influence of the boundaries in
detail, especially by the perfectly absorbing barrier.

(g) Brownian motion:
Continuous random walk in one dimension → Jan Traut-
mann
The motion named after Robert Brown shows the stochastic dis-
placement of a particle by one–dimensional diffusion.

Study Einstein’s concept of Brownian motion to derive the well–
known diffusion equation by reading the original paper Über die
von der molekularkinetischen Theorie der Wärme geforderte Be-
wegung von in ruhenden Flüssigkeiten suspendierten Teilchen in
Annalen der Physik 1905, pp. 549–560.

The solution of the diffusion equation is known as Gaussian dis-
tribution. Show its profile and discuss the properties, especially
the moments.

(h) Stochastic oscillator with/without friction→ Kerstin Witte
Consider the oscillator model with noise given by

dx = v dt (43)

dv = −ω2
0x dt− γv dt+

√
2B dW (t) (44)

and investigate two cases: with (γ > 0) (What is tribology?) and
without (γ = 0) friction.

(i) Stochastic van der Pol oscillator → Siegfried Sobkowiak
Based on the deterministic van der Pol oscillator showing limit
cycle behaviour please add stochasticity now. Explain the random
system and its development. Does the monography by Guckenhei-
mer & Holmes help you again?



(j) Stochastic brusselator → Lennart Fork
Follow section 12.4 in [1] and derive the master equation of the
stochastic brusselator. Make numerical realisations.

(k) Stochastic Schlögl reaction → Michael Kelbg
Describe the Schlögl reaction from the stochastic point of view.
Follow chapter 13 from [1] or similar publications.

(l) Ehrenfest model of diffusion between two boxes→ Karsten
Dittrich
Das Physikerehepaar Paul und Tatiana Ehrenfest formulierte 1907
ein einfaches Modell für die Diffusion von N Molekülen zwischen
zwei miteinander durchlässig verbundenen Behältern. Siehe: Über
zwei bekannte Einwände gegen das Boltzmannsche H–Theorem,
Phys. Zeitschr. 1907, 8. Jahrgang, S. 311–314

Die stochastischen Beschreibung der Diffusion in einem Zwei–
Boxen–Modell ist bei einem diskreten Zustandsraum (Teilchen-
zahl n) und kontinuierlicher Zeit durch folgende lineare Master–
Gleichung gegeben. Sie lautet

∂

∂ t
p(n, t) = d21(N − (n− 1))P (n− 1, t) + d12(n+ 1)P (n+ 1, t)

− [d21(N − n) + d12n]P (n, t) . (45)

Als Anfangsbedingungen setzen wir

P (n, t = 0) = δn−n0 . (46)

Diese obige Master–Gleichung (45) ist zeitabhängig zu lösen.

Die analytische Lösung ist bekannt. Vergleichen Sie das Ergebnis
mit der determinischen Lösung (Mittelwerte) und visualisieren Sie
die Verteilung P (n, t).

Schreiben Sie ein Computerprogramm zur Lösung der stochasti-
schen Master–Gleichung des Zwei–Boxen–Diffusionsprozesses. Ge-
nerieren Sie stochastische Trajektorien und bilden Sie für aus-
gewählte Zeitpunkte die entsprechenden Häufigkeitsverteilungen.
Vergleichen Sie die numerischen Resultate in Abhängigkeit von
der Ensemblegröße mit der analytischen Lösung.

(m) Cluster decay versus radioactive decay→ Sebastian Dittrich
Take a one–step master equation with detachment terms only. In-
vestigate this stochastic dissolution process, starting from a given
(large) size n(t = 0) = n0 > 0, within two different models: (a) car



cluster decay with constant transition rate 1/τ and (b) molecu-
lar or atomic decay process with linear transition rate αn. Define
your system as open or closed depending on the property of the
transition rate at the border n = 0.

15. Performing Projects II (28.05.2008, all students)
Home work

16. Performing Projects III (03.06.2008, all students + R. Mahnke)
Home work and tutorial work for preparation of presentations.

17. Stochastic Markovian process (04.06.2008, R. Mahnke)
A stochastic process describes the temporal evolution of random events
by probability distributions. A stochastic trajectory as a time series (se-
quence of states and times) is called a realisation. After introduction of
joint probability densities (jpd) and conditional probability densities
(cpd) and their relationship the two time moments correlated Mar-
kov process has been discussed. In contract to factorisation of tem-
porally uncorrelated processes the Markovian dynamics is given by the
Chapman–Kolmogorov integral equation which can be written in the
short time limit as differential equation named master equation.

18. Presentation of Project Works I (10.06.2008, R. Mahnke)

⇒ Matthias Florian: Three–level Markov process
Starting with an overview about Markovian processes the master equa-
tion in continuous as well as in discrete formulation is presented. The
three–level system described by the discrete case of master equation
is discussed where the initial probabilities are given and all six transi-
tion rates are taken as constants. The solution is a typical eigenvalue
problem with one zero eigenvalue corresponding to the stationary dis-
tribution. Specific problems like detailed balance (all transition rates
are equal) or stationary flux on a ring are discussed in detail. Final re-
marks concern applications and recent investigations (laser description
by master equation).

⇒ Mathias Winkel: Simulation techniques: Generation of stochastic
trajectories & numerical solution of master equation
Using Euler discretization technique the numerical solution of a sto-
chastic differential equation of Ito type is discussed. Special cases like
Wiener process (white noise) and geometrical Brownian motion are
presented by generation of stochastic trajectories as well as probabili-
ty densities. The numerical procedure of solving the stochastic master

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/ThreeLevelMarkov_Florian.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/SimulaTech_WinkelA4.pdf


equation is explained by using different methods (fixed and variable
time step). Simulation results are shown for three models (jam dissolu-
tion, cluster decay, traffic flow) and compared in part with analytical
solutions.

⇒ Kerstin Witte: Stochastic oscillator
The investigations of the noisy harmonic oscillator with friction are
based on the following set of equations of motion(

dx(t)
dv(t)

)
=

(
0 1
−ω2

0 −β

)(
x(t)
v(t)

)
dt+

(
0
σ

)
dW (t) (47)

together with given initial conditions x(t = 0) = x0 ; v(t = 0) = v0.
The mean value (homogeneous solution, without fluctuations) tends to
zero (if damping β > 0). The exact result x(t) can be calculated by
variation of constants as stochastic trajectory. The second moment (or
variance) in velocity space is finite known from free Brownian motion.
The correlation matrix (or covariance) reads in the long–time limit

COV =
σ2

2β

(
1/ω2

0 0
0 1

)
(48)

19. Presentation of Project Works II (11.06.2008, R. Mahnke)

⇒ Falk Töppel: Geometric Brownian motion
The geometric Brownian motion is described by a stochastic differential
equation. Two different interpretations are considered: Ito notation and
Stratonovich calculus. The solution called stochastic trajectory is given
and shown in figures using different control parameters. The solution
enables to calculate moments and variance.

⇒ Lennart Fork: Stochastic brusselator
Based on the deterministic model of the Brusselator the stochastic ver-
sion is developed. The master equation with well–explained transition
rates is used to get stochastic realisations. Illustrations in the phase
space are shown.

⇒ Siegfried Sobkowiak: Stochastic van der Pol oscillator
In the beginning the Van der Pol oscillator without noise is analysed.
The deterministic behaviour shows a limit cycle which is presented in
phase space. The general stochastic model with two noise sources is
much more complicated. Taking into account one diffusion term only
the Fokker–Planck equation is discussed and solved in the stationary
case. The long–time solutions is written with the help of a double well
potential.

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/h_harmoszi_Witte.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/c_geom_brown_Toeppel.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/j_stoch_brusselator+bilder_Fork.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/i_stoch_Van_der_Pol_oszi_Sobkowiak.pdf


20. Presentation of Project Works III (17.06.2008, R. Mahnke)

⇒ Hannes Hartmann: A drunken sailor close to quay
The symmetric random walk of a sailor on a line is studied taking into
account a given absorbing border called quay. At first the discrete case
is analysed analytically and by simulations. Finally the transition from
a walk with discrete steps to a space–time continuum random walk is
performed.

Brownian motion: Continuous random walk in one dimension
given by Reinhard Mahnke

Ornstein–Uhlenbeck process
given by Christof Liebe

21. Presentation of Project Works IV (18.06.2008, R. Mahnke)

⇒ Karsten Dittrich: Ehrenfest model of diffusion between two boxes
The diffusion model by Ehrenfest uses two boxes with particle jumps
between them. The one–step master equation with simple linear tran-
sition rates is written. The general time dependent solution taking into
account given initial condition is known but difficult to get. The me-
thod using generating functions is helpful, at least to get the stationary
solution.

⇒ Mathias Richter: Random numbers
Firstly the terms randomness and random number are defined. The
generation of so–called pseudo–random numbers is explained. Different
methods of creating random numbers are compared. After implemen-
tation in C++ the properties of generators are analysed.

⇒ Sebastian Dittrich: Cluster decay versus radioactive decay
Based on a general one–step master equation two different decay pro-
cesses are considered in detail. The vehicular cluster decay (jam disso-
lution) is described by a constant detachment rate. The cluster shrinks
linearly. The radioactive decay process uses a linear rate, therefore the
cluster becomes smaller exponentially (mean value).

22. Presentation of Project Works V (24.06.2008, R. Mahnke)

⇒ Johannes Knebel: Brownian motion in monostable
and bistable potential
Langevin equations are discussed. The cases without force as well as
with linear force (quadratic potential) are well known. The situation
with cubic force (monostable and bistable potential) is much more com-
plicated.

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/f_drunken_sailor_Hartmann.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/l_Ehrenfest_diffusion_KDittrich.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/a_random_numbers_Richter.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/m_decay_proc_SDittrich.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/d_langevin_Knebel.pdf
http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/d_langevin_Knebel.pdf


⇒ Michael Kelbg: Stochastic Schlögl reaction
Stochastic description of Schlögl reaction by one–step master equation.
Transition rates are constructed based on chemical kinetics. Simulation
results show bistability.

The drunken sailor: Discrete random walk in one dimension
given by Alko Schurr
Explaining Galton board by showing random events empirically.

23. Randomness in Traffic Flow (25.06.2008, R. Mahnke)
Celebrating 75 years of the very first paper by Greenshield on speed–
flow curves, the so–called Fundamental Diagram as steady state relati-
onship of flux over density has its 75th anniversary in July 2008. The
empirical traffic flow theory is described as phase transition between
free flow and congested traffic. The concept of nucleation on roads is
explained by forming of vehicular clusters in analogy to supersaturated
vapours. The cluster size as number of bounded vehicles is introduced
as stochastic variable. The breakdown probability density has to be
calculated out of the given stochastic dynamics.

24. Cluster Formation on Roads (01.07.2008, R. Mahnke)
Having the first passage time problem in mind the car cluster formation
on roads is discussed as a one–step process (only one car is reaching or
leaving the jam). Using well–explained ansatz for the transition rates
the master equation is formulated. Defining a particular size of congesti-
on (escape value) and the initial situation (no jam) the time necessary
to reach the escape value for the first time gives the breakdown from
free flow to congested traffic.

25. How to Calculate a Traffic Breakdown? (02.07.2008, R. Mahnke)
Based on Fokker–Planck dynamics an example of initial and bounda-
ry value drift–diffusion problem in a finite interval with one reflecting
(left) and one absorbing boundary (right) is introduced. After trans-
formation to dimensionless variables, separation ansatz, wave equation,
discrete set of wave numbers, superposition, the outflow at right boun-
dary is calculated. Discussion of outflow function (probability per time)
at right boundary as well as the cumulative function within an given
observation time interval.

http://www.physik.uni-rostock.de/mahnke/lehre/ss08/HA_StochDynamik_Juni/k_stoch_schloegl_Kelbg.pdf
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