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Short note on the motion of a geometric random walker
Notations follow the book ’Physics of Stochastic Processes’ written by Mahnke, Kaupužs
and Lubashevsky (MKL). The examples have been programed with matlab run in an
octave environment (octave.org). Octave is free ware and matlab you have to buy. Both
use the same syntax. Here the motion of a geometric random walker is investigated.
The position of the walker is denoted with x(t) where t is time. This is the case with
drift and random motion and in the second part a case with no drift just random motion
is discussed.
The steps of the geometric walker are described accordingly:

Step 1. Define a starting position at t = 0 as x(t = 0) = x0.

Step 2. Define the length in time of the walk t ∈ [0, tmax] and a incremental time ∆t for
new positions.

Step 3. Generate a random number z (Gaussian distributed). In matlab there is a function
randn for this. You may also use a ’Box–Muller’ algorithm to generate z.

Step 4. Calculate ∆w = z
√

∆t. This is eq. 5.153 (MKL). We note that dimensions for w is

s
1
2 .

Step 5. According to (MKL) eq 5.166 we have dx(t) = ax(t)dt + bx(t)dw(t). As one can
see from this equation some care has to be taken about the choice of the starting
position x0. The choice used for the calculations here is x0 = 1.0. One cannot
choose x0 = 0.0 as this will give no motion. Neither should x0 be negative. In total
two different choices for the parameters a and b are made. We have for our discrete
version the following relation (just keep track of dimensions):

∆x = ax(t)∆t+ bx(t)∆w (1)

here dimensions for a is s−1 and for b is s−
1
2 as the dimension of w is s

1
2 .

Step 6. Now assign new values to x and t according to

xi+1 = xi + ∆x (2)

ti+1 = ti + ∆t (3)

Step 7. Loop to step 3 until your condition in step 2 t ∈ [0, tmax] is reached.

The steps above define our random geometric walker. Now we turn to some results for
two cases. First some attention is needed for the random numbers z that are Gaussian
distributed. They should fulfil the following requirements for the average and variance
(eq. 5.159 in MKL):

〈z〉 = 0.0 (4)

〈z2〉 = 1.0 (5)

(6)

if they do not the random numbers should be renormalised accordingly.



The boundary conditions used are

x0 = 1.0 m (7)

tmax = 10 s (8)

∆t = 0.001 s (9)

the last one is not really a boundary condition but a choice has to be made.

Results for a = 1.0 s−1 and b = 0.5 s−
1
2 (with drift).

A note of caution first. As we integrate out the model with increments in x given by
eq. 1 one might think it could be possible to go from a x(t) > 0 to a negative x(t). In
principle a step in a Euler or Runge–Kutta integration would allow for this but if this
happens the numerical integration is wrong as it gives an unphysical result and you should
reduce ∆t. Note that as x(t) gets smaller also ∆x get smaller according to eq. 1. It is
also apparent from eq. 10 that x should not become negative.

The reason for this particular choice of a and b is that it is the one shown in MKL
Figure 5.10 . In figure 1 four different realisations of a geometric random walk are shown.

The data shown are for the time evolution of the walkers position x(t). The total time
of each run is tmax = 10 s and as ∆t = 0.001 s each run consists of 10000 steps. At the
far right in each time series as the walker reaches tmax the walker is at position x(tmax).

We now turn our attention to this final position. If we perform many realisations of
random walkers and for each random walker we register its final position x(tmax). Now we
can generate a distribution of these final positions. The final positions form a distribution
where positions far away from the starting point (drifting average) are less likely and
positions close to the starting point (drifting average) are more likely. The probability
density of final the positions can be shown as a histogram in the following way.

As the final positions are real numbers we will approximate them with the nearest
integer and form a histogram of these final integer positions. If for a certain walker its
final position is x(tmax) = 28.8781963939354 we will ad 1 to the histogram position ’29’.

The histogram consisting of the final positions of 10000 geometric random walkers is
analysed in the following way. The sum of all histogram boxes is accordingly 10000 and
to change this into a probability function the values in the histogram have to be divided
by 10000 (as we have integer length of the boxes). This will transform the histogram into
a probability density. The sum of all densities will equal 1.00 . In figure 2 the results are
shown as blue stars ’*’.

It is also possible to evaluate the theoretical distribution p(x, t) at time t = tmax

according to eq. (10). This is eq. 5.175 in MKL. To compare with our results we set
x0 = 1.0, a = 1.0 and b = 0.50.

p(x, t) =
1√

2πb2t

1

x
e−

(ln( x
x0

)−(a− b2

2 )t)2

2b2t (10)

This function is shown in figure 2 as a solid black line. A prominent feature of the
probability density is that at about x(tmax) ≈ 25 m there is a maximum. One can say
there is a most probable route for our walker. As time evolves this maximum will get less
prominent.
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Figure 1: Four different realisations of a random walker. All walkers have starting position
x0 = 1.0 and run for tmax = 10 s. The parameters are a = 1.0 s−1 and b = 0.5 s−

1
2 . The

fifth figure shows the same data as the four above. It is only drawn with a logarithmic
scale for the positions. The follow more or less straight lines in this scale indicating the
exponential growth.
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Figure 2: Histogram of the probability distribution of the final positions recorded for
10000 different walkers. The results for the walkers are marked with blue ’*’. The solid
line is the theoretical probability distribution function eq.(10).
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Results for a = 0.5 s−1 and b = 1.0 s−
1
2 (with no drift).

The reason for this particular choice of a and b is that eq. 10 contains a term a− b2

2

and this particular choice makes this a − b2

2
= 0. The previous choice made a − b2

2
> 0

and hence a slow drift away to increasing x this was also easily seen in figure 1. The other
possibility is a − b2

2
< 0 and for this case the distribution will not drift away from the

vicinity of x = 0 with always x(t) > 0. This is also seen in eq. 10 where a negative x
would be problematic for ln(x/x0).

In figure 3 four different realisations of a geometric random walk are shown.

Figure 3: Four different realisations of a random walker. All walkers have starting position
x0 = 1.0 and run for tmax = 10 s. The parameters are a = 0.5 and b = 1.0

The data shown are for the time evolution of the walkers position x(t). The total time
of each run is tmax = 10 s and as ∆t = 0.001 each run consists of 10000 steps.

If we compare the previous figure 1 to the last time series figure 3 we can clearly see
a difference in appearance. The previous time series all show a tendency to increasing x
whereas the last ones do not a feature very clear if we use a logarithmic axis. In agreement
with eq. 10.

To analyse this histogram in figure 4 consisting of the final positions of 10000 geometric
random walkers. The sum of all histogram boxes is accordingly 10000 and to change this
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Figure 4: Histogram of the probability distribution of the final positions at t = 10 s
recorded for 10000 different walkers. The results for the walkers are marked with blue ’*’.
All walkers started at x0 = 1.0 and the parameters are a = 0.5 and b = 1.0 The solid line
is the theoretical probability distribution function eq.(10).

into a probability function the values in the histogram have to be divided by 10000. (As a
technical note just from the figure 4 one can see that the histogram is stretched by a factor
10 so in reality one should not divide by 10000 but with 1000 as the with a box is 0.1 m.)
This will transform the histogram into a probability density. In figure 2 the results are
shown as blue stars ’*’. The solid black curve is the probability density function eq. 10
for this case.

The histogram in figure 4 is actually truncated as some of the geometric random
walkers will reach quite far out in 10 seconds In total 31 random walkers managed to go
beyond x(tmax) = 4000 m. As there is no drift in this configuration there is no maximum
in the distribution either. as was the case in figure 2 where there is a maximum at about
x(tmax) ≈ 25 m.
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %
3 % Matlab program to v i s u a l i z e the s t o c h a s t i c ( geometr ic )
4 % proce s s f o r one Random Walker
5 %
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 c l e a r
9 format long

10 c l f ;
11

12 t t (10001) = 0 .0 d0 ;
13 x t (10001) = 0 .0 d0 ;
14 d e l t a t = 0.0010 ;
15 t max = 10 .0 ;
16 i max = t max / d e l t a t ;
17 delta W t = 0 .0 d0 ;
18 de l t a x = 0 .0 d0 ;
19 w square = 0 .0 d0 ;
20 xt = 1 .0 d0 ;
21 %
22 % a b
23 % 10 05
24 % a = 1.0 d0 ;
25 % b = 0.5 d0 ;
26 %
27 % a b
28 % 05 10
29 a = 0 .5 d0 ;
30 b = 1 .0 d0 ;
31

32 f o r i = 1 : i max + 1
33 Z = randn ;
34 t t ( i ) = i ;
35 w square = w square + Z∗Z ;
36 delta W t = Z ∗ s q r t ( d e l t a t ) ;
37 de l t a x = a∗xt∗ d e l t a t + b∗xt∗delta W t ;
38 xt = xt + de l t a x ;
39 x t ( i ) = xt ;
40 end
41

42 w square = w square /( double ( i max + 1) )
43 X t (10001)
44 t t = t t ∗ d e l t a t ;
45

46 hold o f f
47 p lo t ( t t , X t )
48 hold on
49

50 f p r i n t f (1 , ’ \n ’ ) ;
51

52 formatSpec = ’ %6.3 f %9.6 f \n ’ ;
53 f i l e ID = fopen ( ’ t ime s e r i e s 0 5 1 0 x . dat ’ , ’w ’ ) ;
54 f o r i 1 =1: i max + 1
55 f p r i n t f ( f i l e ID , formatSpec , t t ( i 1 ) , X t ( i 1 ) )
56 end
57 f c l o s e ( f i l e ID ) ;
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %
3 % Matlab program to v i s u a l i z e the s t o c h a s t i c p roce s s f o r 20000 random
4 % walkers as an end r e s u l t a histogram i s produced
5 %
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 c l e a r
9 format long

10

11 i h i s t o = 0 ;
12 i h i s t o max = 40000 ;
13 histogram x (40001) = 0 ;
14 histogram y (40001) = 0 ;
15 f o r k = 1 : i h i s t o max + 1
16 histogram x (k ) = 0.10 d0 ∗( k − 1) ;
17 end
18 f p r i n t f (1 , ’ \n ’ ) ;
19

20 c l f ;
21

22 hold on
23 p l t . p1 = p lo t ( histogram x , histogram y , ’ bo ’ , ’ l i n ew id th ’ , 3 ) ;
24 hold o f f
25 drawnow( ’ expose ’ )
26

27 % s t a r t s the loop to generate 20000 walkers
28 kmax = 10000 ;
29 f o r k=1: kmax
30

31 t t (10001) = 0 .0 d0 ;
32 X t (10001) = 0 .0 d0 ;
33 d e l t a t = 0.0010 ;
34 t max = 10 .0 ;
35 i max = t max / d e l t a t ;
36 delta W t = 0 .0 d0 ;
37 de l t a x = 0 .0 d0 ;
38 w square = 0 .0 d0 ;
39 xt = 1 .0 d0 ;
40 %
41 % a b
42 % 10 05
43 % a = 1.0 d0 ;
44 % b = 0.5 d0 ;
45 %
46 % a b
47 % 05 10
48 a = 0 .5 d0 ;
49 b = 1 .0 d0 ;
50

51

52 % loop f o r one walker
53 f o r i = 1 : i max + 1
54 Z = randn ;
55 t t ( i ) = i ;
56 w square = w square + Z∗Z ;
57 delta W t = Z ∗ s q r t ( d e l t a t ) ;
58 de l t a x = a∗xt∗ d e l t a t + b∗xt∗delta W t ;
59 xt = xt + de l t a x ;
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60 X t ( i ) = xt ;
61 i f ( xt < 0 .0 d0 )
62 echo ” NEGATIVE VALUES ”
63 stop
64 end
65

66 end
67

68 w square = w square /( double ( i max + 1) )
69 k
70 X t (10001)
71 i h i s t o = round (10 . 0 d0∗X t (10001) )
72

73 i h i s t o = i h i s t o +1 ;
74

75 i f ( i h i s t o > i h i s t o max )
76 i h i s t o = i h i s t o max + 1
77 end
78

79 i f ( ( i h i s t o > 0 ) && ( i h i s t o <= i h i s t o max + 1 ) )
80 histogram y ( i h i s t o ) = histogram y ( i h i s t o ) + 1 ;
81 end
82

83 i f ( ( i h i s t o > 0 ) && ( i h i s t o <= i h i s t o max + 1 ) )
84 s e t ( p l t . p1 , ’XData ’ , histogram x , ’YData ’ , h i stogram y ) ;
85 end
86 drawnow( ’ expose ’ )
87

88 f p r i n t f (1 , ’ \n ’ ) ;
89

90 end
91

92

93 formatSpec = ’ %6.3 f %9.6 f \n ’ ;
94 f i l e ID = fopen ( ’ h i s togram 05 10 10000 x . dat ’ , ’w ’ ) ;
95 f o r i 1 =1: i h i s t o max + 1
96 f p r i n t f ( f i l e ID , formatSpec , h istogram x ( i 1 ) , h i stogram y ( i 1 ) )
97 end
98 f c l o s e ( f i l e ID ) ;
99

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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