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The Importance of Being Noisy – Stochasticity in Science

Why stochastic tools? When you asked alumni graduated from Euro-
pean universities moving into nonacademic jobs in society and industry what
they actually need in their business, you found that most of them did stocha-
stic things like time series analysis, data processing etc., but that had never
appeared in detail in university courses.

Aim The general aim is to provide stochastic tools for understanding of
random events in many beautiful applications of different disciplines ranging
from econophysics up to sociology which can be used multidisciplinary.

State of the art General problem under consideration is the theoretical
modeling of complex systems, i. e. many–particle systems with nondetermi-
nistic behavior. In contrast to established classical deterministic approach
based on trajectories we develop and investigate probabilistic dynamics by
stochastic tools such as stochastic differential equation, Fokker–Planck and
master equation to get probability density distribution. The stochastic ap-
paratus provides more understandable and exact background for describing
complex systems. The idea goes back to Einstein’s work on Brownian motion
in 1905 which explains diffusion process as fluctuation problem by Gaussian
law as a special case of Fokker–Planck equation.
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Textbooks

PHYSICS TEXTBOOK

R. Mahnke, J. Kaupužs, 
and I. Lubashevsky

Physics of Stochastic 
Processes

How Randomness Acts in Time

Fig. 1: R. Mahnke, J. Kaupužs and I. Lubashevsky: Physics of Stochastic
Processes, Wiley-VCH, Weinheim, 2009.

• C. W. Gardiner: Handbook of Stochastic Methods, Springer, 2004
• V. S. Anishchenko et. al: Nonlinear Dynamics of Chaotic and Stochastic
Systems, Springer, 2007
• W. Paul, J. Baschnagel: Stochastic Processes, Springer, 1999
• H. Risken: The Fokker-Planck Equation, Springer, 1984
• M. Ullah, O. Wolkenhauer: Stochastic Approaches for Systems Biology,
Springer, 2011
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1 Master Equation

1.1 Markovian Stochastic Processes

Stochastic processes enter into many physical descriptions of nature. Histori-
cally first the motion of a heavy particle in a fluid of light molecules has been
observed. The path of such Brownian particle consists of stochastic displa-
cements due to random collisions. Such motion was studied by the Scottish
botanist Robert Brown (1773 – 1858). In 1828 he discovered that the micros-
copically small particles into which the pollen of plants decay in an aqueous
solution are in permanent irregular motion. Such a stochastic process is cal-
led Brownian motion and can be interpreted as discrete random walk or
continuous diffusion movement.

The intuitive background to describe the irregular motion completely as
stochastic process is to measure values x1, x2, . . . , xn, . . . at time moments
t1, t2, . . . , tn, . . . of a time dependent random variable x(t) and assume that
a set of joint probability densities, called JPD–distributions

pn(x1, t1;x2, t2; . . . ;xn, tn) , n = 1, 2, . . . (1)

exists. The same can be done by introducing the set of conditional probability
densities (called CPD–distributions)

pn(xn, tn | xn−1, tn−1; . . . ;x1, t1) , n = 2, 3, . . . (2)

denoting that at time tn the value xn can be found, if at previous times
tn−1, . . . , t1 the respective values xn+1, . . . x1 were present. The relationship
between JPD and CPD is given by

pn+1(x1, t1; . . . ;xn+1, tn+1)

= pn+1(xn+1, tn+1 | xn, tn; . . . ;x1, t1) pn(x1, t1; . . . ;xn, tn) . (3)

This stochastic description in terms of macroscopic variables will be cal-
led mesoscopic. Why? Typical systems encountered in the everyday life like
gases, liquids, solids, biological organisms, human or technical objects con-
sist of about 1023 interacting units. The macroscopic properties of matter are
usually the result of collective behavior of a large number of atoms and mo-
lecules acting under the laws of quantum mechanics. To understand and con-
trol these collective macroscopic phenomena the complete knowledge based
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upon the known fundamental laws of microscopic physics is useless because
the problem of interacting particles is much beyond the capabilities of the
largest recent and future computers. The understanding of complex macros-
copic systems consisting of many basic particles (in the order of atomic sizes:
10−10 m) requires the formulation of new concepts. One of the methods is the
stochastic description taking into account the statistical behavior. Since the
macroscopic features are averages over time of a large number of microscopic
interactions, the stochastic description links both approaches together, the
microscopic and the macroscopic one, to give probabilistic results.

Speaking about a stochastic process from the physical point of view we
always refer to stochastic variables (random events) changing in time. A
realization of a stochastic process is a trajectory x(t) as function of time.
Here we introduce a hierarchy of probability distributions

pn(x1, t1;x2, t2; . . . ;xn, tn) dx1dx2 . . . dxn , n = 1, 2, . . . , (4)

where p1(x1, t1)dx1 is known as time dependent probability of first order to
measure the value x1 (precisely, the value within [x1, x1 + dx1]) at time t1,
p2(x1, t1;x2, t2) is the same probability of second order, up to higher–order
joint distributions pn(x1, t1; . . . ;xn, tn)dx1dx2 . . . dxn to find for the stochastic
variable the value x1 at time moment t1, the value x2 at time t2 and so on.
Only the knowledge of such infinite hierarchy of joint probability densities
pn(x1, t1; . . . ;xn, tn) (expression (1)) with n = 1, 2, . . . gives us the overall
description of the stochastic process.

A stochastic process without any dynamics (like a coin throw or any
hazard game) is called a temporally uncorrelated process. It holds that

p2(x1, t1;x2, t2) = p1(x1, t1) p1(x2, t2) , (5)

if random variables at different times are mutually independent. It means
that each realization of a random number at time t2 does not depend on
previous time t1, i. e., the correlation at different times t1 6= t2 is zero.
Such a stochastic process, where function p1(x1, t1) ≡ p1(x) is the density of
a normal distribution, is called Gaussian white noise. The Gaussian white
noise with its rapidly varying, highly irregular trajectory is an idealization of
a realistic fluctuating quantity. Due to factorization of all higher–order joint
probability densities the knowledge of the normalized distribution p1(x1, t1)
describes the process totally.

Now we are introducing dynamics via correlations between two different
time moments. This basic assumption enables us to define the Markov pro-
cess, also called Markovian process, by two quantities totally, namely the
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first–order p1(x1, t1) and the second–order probability density p2(x1, t1;x2, t2),
or equivalently by the joint probability p1(x1, t1) and the conditional proba-
bility p2(x2, t2 | x1, t1) to find the value x2 at time t2, given that its value
at previous time t1 (t1 < t2) is x1. In contradiction to uncorrelated proces-
ses (5) discussed before, Markov processes are characterized by the following
temporal relationship

p2(x1, t1;x2, t2) = p2(x2, t2|x1, t1) p1(x1, t1) . (6)

The Markov property

pn(xn, tn | xn−1, tn−1; . . . ;x1, t1) = p2(xn, tn | xn−1, tn−1) (7)

enables us to calculate all higher–order joint probabilities pn for n > 2. To
determine the fundamental equation of stochastic processes of Markov type
we start with the third–order distribution (t1 < t2 < t3)

p3(x1, t1;x2, t2;x3, t3) = p3(x3, t3 | x2, t2;x1, t1) p2(x1, t1;x2, t2)
= p2(x3, t3 | x2, t2) p2(x2, t2 | x1, t1) p1(x1, t1) (8)

and integrate this identity over x2 and divide both sides by p1(x1, t1). We
get the following result for the conditional probabilities defining a Markov
process

p2(x3, t3 | x1, t1) =

∫
p2(x3, t3 | x2, t2) p2(x2, t2 | x1, t1) dx2 , (9)

called Chapman–Kolmogorov equation.
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1.2 Repetition: Deterministic Processes

1.2.1 Deterministic Dynamics

Comparing deterministic dynamics and stochastic motion. Each dynamical
system (without randomness) has a unique solution called trajectory which
is either a regular or an irregular (chaotic) motion. On the other hand, a
stochastic process describes temporal evolution of random events by proba-
bilities (discrete case) or probability densities (continuous case). A stochastic
trajectory is a sequence of states and times measured as time series.

1.2.2 Mathematical Pendulum: Dynamics

Text and presentation by MSc. Martins Brics.

Fig. 2: Mathematical pendelum

Lets calculate total mechanical energy E of mathematical pendulum (see
Fig. 2)

E = Ekin + Epot =
mv2

2
+mgl(1− cosα) =

L2

2I
+mgl(1− cosα) , (10)

where Ekin is kinetic energy, Epot is potential energy (potential energy is
assumed to be 0, when α = 2πn, n ∈ Z), m is mass of pendulum, v is
speed of pendulum, l is length of pendulum, I = ml2 is moment of inertia,
L = mvl = Iα̇ is angular momentum pα ≡ L.
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So Hamiltonian for mathematical pendulum is

H(α, pα) ≡ H(α,L) =
L2

2I
+mgl(1− cosα). (11)

The equations of motion with initial conditions are

dα

dt
=
∂H

∂L
=
L

I
, (12)

dL

dt
= −∂H

∂α
= −mgl sinα, (13)

L(t = 0) = L0 ;α(t = 0) = α0 . (14)

To get phase plane solution we can simply use energy conservation equation
(10) or divide equations (12) and (13) and solve first order order differential
equations (ODE).

Lets use energy conservation. Then

E =
L2
0

2I
+mgl(1− cosα0) =

L2

2I
+mgl(1− cosα) , (15)

L = ±
√

2IE − 2Imgl(1− cosα) . (16)

For simpler analysis lets introduce dimensionless quantities defined as
Ẽ = E/2mgl, L̃ = L/

√
mglI, t̃ = t

√
mgl/I = t

√
g/l.

The dimensionless analog of equation (16) reads

L̃ = ±2

√
Ẽ − 1

2
(1− cosα) = ±2

√
Ẽ − sin2 α

2
. (17)

From equation (17), because 0 ≤ sin2 α ≤ 1, we see that there are two
possibilities; either trajectory in phase plane are closed lines (there exist α for
which L=0) or not (see Fig. 3). The first situation corresponds to oscillations
and it is when Ẽ < 1. The second situation corresponds to rotation and it is
when Ẽ > 1.

Lets rewrite equations of motion also in dimensionless form.

dα

dt̃
= L̃, (18)

dL̃

dt̃
= − sinα, (19)

L̃(t̃ = 0) = L̃0 ; α(t̃ = 0) = α0 . (20)
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Fig. 3: Phase plane solution for mathematical pendulum

If we insert equation (17) into (18) we get.

dα/2

dt̃
= ±

√
Ẽ − sin2 α

2
, (21)

α(t̃ = 0) = α0 . (22)

And if we integrate with MAPLE, we get

t̃ = ±
sgn(cos α

2
)√

Ẽ
EllipticF

(
sin

α

2
,

1√
Ẽ

)
∓

sgn(cos α0

2
)√

Ẽ
EllipticF

(
sin

α0

2
,

1√
Ẽ

)
(23)

As Elliptic functions of first kind are no elementary functions, this do not
help a lot, so better use numerical solvers. But there are two cases when
elliptic integral disappears, when Ẽ = 1 and α� 1.

• When Ẽ = 1, then we equations (21) simplifies to

dα/2

dt̃
= ± cos

α

2
(24)

and if we integrate we get

t̃ = ±arctanh(sin
α

2
) + C . (25)
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If we use initial conditions and express α, we get

α = 2 arcsin(tanh(sgn(L̃0)t̃+ arctanh(sin
α0

2
))) , (26)

L̃ = 2 sgn(L̃0)

√
1− tanh2(sgn(L̃0)t̃+ arctanh(sin

α0

2
)) (27)

This is rotation or oscillation with infinite period.

• When Ẽ � 1, sinα
2
≈ α

2
and then equations 21 simplifies to

dα/2

dt̃
= ±

√
Ẽ −

(α
2

)2
(28)

And if we integrate we get

t̃ = ± arcsin
α

2
√
Ẽ

+ C (29)

If we use initial conditions and express α, we get

α = 2
√
Ẽ sin

[
sgn(L̃0)t̃+ arcsin

α0

2
√
Ẽ

]
(30)

L̃ = sgn(L̃0)2
√
Ẽ cos

[
sgn(L̃0)t̃+ arcsin

α0

2
√
Ẽ

]
(31)

These are harmonic oscillations.

1.2.3 Mathematical Pendulum: Stationary solutions

Stationary solutions of Eqs. (12, 13) do not change in time. To find them we

have to set time derivatives to zero, e. g. dα
dt̃

= 0 and dL̃
dt̃

= 0

0 = L̃st, (32)

0 = − sinαst, (33)

If we limit angle to 0 ≤ α < 2π the solution are two stationary solutions:

xxx1 =

(
0
0

)
xxx2 =

(
π
0

)
, (34)
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where I used vector notation:

xxx =

(
α

L̃

)
. (35)

Lets analyze stability of them. To do so lets introduce small perturbations
δL̃ for angular impulse and δα for angle: α = αst+δα, L̃ = L̃st+δL̃. Inserting
this into Eqs. of motion (18) and (19) we obtain Eq. for perturbations

dδα

dt̃
= L̃st + δL̃, (36)

dδL̃

dt̃
= − sin(αst + δα), (37)

Expanding in Taylor series up to first order we get

dδα

dt̃
= δL̃, (38)

dδL̃

dt̃
= − cos(αst)δα, (39)

or in Matrix notation

d

dt̃

(
δα

δL̃

)
=

(
0 1

− cos(αst) 0

)(
δα

δL̃

)
= J(xxxi)

(
δα

δL̃

)
, (40)

where J(xxxi) in general case is Jacobian matrix. This is a linear system. The
solutions of this system are(

δα

δL̃

)
= C1v1v1v1e

λ1t + C2v2v2v2e
λ2t , (41)

where C1 and C2 are coefficients and v1v1v1, v2v2v2 and λ1, λ2 are eigenvectors and
eigenvalues of matrix J(xxxi).The perturbation will grow if <λi > 0.

To find eigenvalues we have to solve Eq. det(J(xxxi)− λI) = 0.

• For stationarity solution xxx1 we find

λ1 = ı λ2 = −ı. (42)

The eigenvalue are purely imaginary, so this describes oscillations with
constant amplitude. This is stable solution.

• For stationarity solution xxx2 we find

λ1 = 1 λ2 = −1. (43)

This is clearly unstable solution.
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1.2.4 Linear stability analysis

In general case to preform stability analysis of stationary solution for system
of nonlinear first order differential Eq. written in vector form ẋxx = fff(xxx) you
first have to

1. find stationary solutions: ẋxx = fff(xxxst).

2. Calculate Jacobian matrix J with elements Jij = ∂fi
∂xj

.

3. Evaluate Jacobian matrix at stationary solution J(xxxst) = J|xxx=xxxst .

4. Calculate eigenvalues of Jacobian matrix evaluated at stationary point
det(J(xxxi)− λI) = 0.

5. Analyze eigenvalues:

• if real part of all eigenvalues are negative, then solution is stable.

• if real part of one or more eigenvalues is positive, then solution is
unstable.

• if eigenvalues are purely imaginary, there is no conclusion (then
we have a borderline case between stability and instability; such
cases in general require an investigation of the higher order terms
we neglected in linear stability analysis). If after applying stability
analysis of higher order we still have the same analysis then we
have undamped osculations with constant amplitude around sta-
tionery solution as in case of Mathematical Pendulum (Sec. 1.2.2).
Such solutions are still called stable. As it is quite difficult you can
try to solve Eq. numerically to see if it is stable or unstable.

1.2.5 Lorenz Model

Lorenz model (see system of Eqn. (44)) was originally derived by Edward N.
Lorenz as approximation to Rayleigh-Benard convection cells model which
describe the dynamical behavior of convection rolls in fluid layers that are
heated from below. Variables x, y, z are velocities in x, y and z direction, and
parameter σ is Prandtl number, r = Ra/Rc where where Ra is the Raleigh
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number and Rc is the critical value of Ra, and b is just geometrical factor.
Note that all parameters are positive numbers.



dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz

(44)

Lets start with fixed point analysis.

For simplicity lets introduce vector xxx and vector function fff(xxx)

xxx =

xy
x

 fff(xxx) =

 σ(y − x)
rx− y − xz
xy − bz

 dxxx

dt
= ẋxx ,

so now Lorenz equation we can write just as ẋxx = fff(xxx). To find fixed points
we need to solve fff(xxx) = 0. 

0 = σ(y − x)

0 = rx− y − xz
0 = xy − bz

(45)

Despite nonlinearity of Lorenz system it is quit easy because first equation
of (45) gives us that for fixed x = y. And we find that

xxx1 =

0
0
0

 xxx2 =

√(r − 1)b√
(r − 1)b
r − 1

 xxx3 =

−√(r − 1)b

−
√

(r − 1)b
r − 1

 (46)

Note that xxx2 and xxx3 are only valid for r > 1, this implies, that r = 1 should
be bifurcation point.

Now we should explore stability of fixed points. But because Lorenz sy-
stem is invariant under transformation (x, y, z) ↔ (−x,−y, z) we have to
analyze only properties of xxx1 and xxx2, because fixed point xxx3 has the same
properties as xxx2. As this system is complicated lets do only linear stability
analysis.

Linear stability analysis tells us, if real parts of all eigenvalues of the
Jacobian matrix JJJ(xxx) (Jij = ∂fi

∂xj
) at fixed point are negative then fixed point
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is stable. For Lorenz system Jacobian matrix is

JJJ(xxx) =

 −σ σ 0
r − z −1 −x
y x −b

 (47)

• Stability of xxx1:

For fixed point xxx1 Jacobian matrix is

JJJ(xxx1) =

−σ σ 0
r −1 0
0 0 −b

 (48)

To calculate eigenvalues λ of Jacobian matrix we need to solve equation
Det(JJJ(xxx1)− λI) = 0, where I is 3x3 is identity matrix.

Det(JJJ(xxx1)− λI) =

∣∣∣∣∣∣
−σ − λ σ 0

r −1− λ 0
0 0 −b− λ

∣∣∣∣∣∣ = −(b+ λ)

∣∣∣∣−σ − λ σ
r −1− λ

∣∣∣∣ =

= −(b+ λ)[(σ + λ)(1 + λ)− rσ] = −(b+ λ)[λ2 + (σ + 1)λ− σ(r − 1)]

(49)

And if we solve

−(b+λ)[(σ+λ)(1+λ)−rσ] = −(b+λ)[λ2+(σ+1)λ−σ(r−1)] = 0 (50)

we get that

λ1 = −b λ2,3 = −1

2

[
(σ + 1)±

√
(σ + 1)2 + 4σ(r − 1)

]
(51)

We see that real part of λ1 and λ2 are always negative, but for r > 1
as we expected λ3 becomes negative.

So for r < 1 fixed point xxx1 is stable, but for r > 1 is unstable.

• Stability of xxx2 and xxx3:

For fixed point xxx2 Jacobian matrix is

JJJ(xxx2) =

 −σ σ 0

1 −1 −
√

(r − 1)b√
(r − 1)b

√
(r − 1)b −b

 (52)
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To calculate eigenvalues λ of Jacobian matrix we need to solve equation
Det(JJJ(xxx1) − λI) = 0, where I 3x3 is identity matrix. If we expand
Determinant we get third order equation for λ

λ3(1 + b+ σ)λ2 + b(r + σ)λ+ 2bσ(r − 1) = 0 (53)

but analytical solutions of equation 53 (to get them I used MAPLE
and later also Mathematica) are long and complicated expressions. But
nerveless we can tray to plot them. Lets start to analyze most popular
case <(λ) = f(r) for b = 8/3, σ = 10. As you can see in Fig. 4 real part
of eigenvalues is positive for 0 < r < 1, somewhere about 13.3 and for
r > 24.73. The better look for behavior for 13 < r < 14 you can see
in Fig- 5. But now it looks like singularity (two eigenvalues go to +∞
and one to −∞), what is not possible.

Fig. 4: <(λ) = f(r) for b = 8/3, σ = 10, plotted with maple

And if we tray to look numerically if fixed points in this region are
reallyunstable (see Fig. 6.) we see that they actually are stable. So
positive real parts of eigenvectors around 13.3 must be just numerical
errors from maple, and the same calculations with Mathematica (see
Fig. 7) confirms this. So Mathematica for this test is better choice.

If we now change σ and b we get similar picture to 7 or 8 - there is
critical value for r > 1 when system becomes unstable or there is no
such value.
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Fig. 5: <(λ) = f(r) for b = 8/3, σ = 10, plotted with maple in smaller range
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Fig. 6: Stability analysis of xxx2 for b = 8/3, σ = 10, r = 13.78
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Fig. 7: <(λ) = f(r) for b = 8/3, σ = 10, plotted with mathematica
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Fig. 8: <(λ) = f(r) for b = 8/3, σ = 1, plotted with mathematica
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Fig. 9: <(λ) = f(σ) for b = 8/3, r = 2, plotted with mathematica
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Fig. 10: <(λ) = f(σ) for b = 8/3, r = 30, plotted with mathematica
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Fig. 11: <(λ) = f(b) for σ = 10, r = 2, plotted with mathematica
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Fig. 12: <(λ) = f(b) for σ = 10, r = 30, plotted with mathematica
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If we now look at <(λ) = f(σ) for fixed r and b. We always get similar
Figs. to (9) or (10) - there is interval when system becomes unstable
or there is no such interval.

If we now look at <(λ) = f(b) for fixed r and σ. We always get similar
Figs. to (11) or (12) - the system is stable, or there is interval 0 < b <
bmax when system is unstable.

But generally it possible to find analyzing numerical solutions or ana-
lytical expressions, that if

r = rH =
σ(σ + b+ 3)

σ − b− 1
σ > b+ 1 (54)

we get eigenvalues are

λ1 = −1−b−s λ2 = ı

√
2
√
bs+ bs2√

s− 1− b
λ3 = −ı

√
2
√
bs+ bs2√

s− b− 1
(55)

and we see that <(λ1) < 0 and <(λ2,3) = 0. So this should be the
critical point (in fig. 7 rH = 24.73683798 ) when xxx2 becomes unstable.

So if σ < b + 1, then xxx2 is stable if 1 < r and if σ > b + 1 , then xxx2 is
stable if 1 < r < rH (see equation 54).

But linear stability theory only says about long time solution if initial
conditions are close to fixed points. So to fully understand we have to cal-
culate Lyaponov exponents for all initial conditions. This is hard and can
be only done numerically. So instead of that I tried to explore phase plane
solution dependence on initial conditions and r for fixed b and σ. So I chose
2 sytems with b = 8/3, σ = 10 and b = 8/3, σ = 1.

• if b = 8/3, σ = 1

Then independent of initial conditions if r > 1 the solution converges
to xxx2 (see figures 13 and 14 ) or when r < 1 the solution converges to
xxx1. So bifurcation diagram for this case is simple and you can see in
figure 15 (as it is symmetrical for -x only positive values are showed).

• if b = 8/3, σ = 10

Then we have much more interesting situation.

– If 0 < r < 1 then independent of initial condition system converges
to xxx1.
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– if 1 < r < 13.92 then independent of initial condition system
converges to xxx2 or xxx3

– if 13.93 < r < 24.0 then if initial condition are close to xxx2 or xxx3
system converges to xxx2 or xxx3, but if not system start to rotate
around one fixed point and then switch rotation around other
fixed point. Switching happens irregularly until it comes finally
enough close to one of attractors and then converges quit fast.
Two trajectories from initial conditions which are close can be
very different (see figures 16 and 17) but at lim

t→∞
they are either

xxx2 or xxx3. This is called transient chaos.

– if 24.1 < r < 24.73 then if initial condition are close to xxx2 or xxx3
system converges to xxx2 or xxx3, but if not system start to rotate
around one fixed point and then switch rotation around other fi-
xed point. Switching happens irregularly and steady state is never
reached (see fig. 18,19 and 20 ). This is called strange attractor.

– if 24.74 < r < 313 Independent of initial conditions we can observe
strange attractor (21 and 24 ). In this region limit cycles also are
observed.

– r > 313 There is no more strange attracts only limit cycles (see
fig.22, 23 and 25 )

The bifurcation diagram you can see in Fig. (26).

As system is attracted to one point, phase space volume is not conserved
and we have a dissipative system.
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Fig. 13: Phase space trajectories for b = 8/3, σ = 1, r = 50 with initial
conditions x0 = x2 + 0.1, y0 = y2 + 0.1, z0 = z2 + 0.1 and x2, y2, z2 are
components of xxx2

Fig. 14: Phase space trajectories for b = 8/3, σ = 1, r = 50 with initial
conditions x0 = x2 + 50, y0 = y2 + 50, z0 = z2 + 50 and x2, y2, z2 are
components of xxx2

Fig. 15: Bifurcation diagram for b = 8/3, σ = 1
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Fig. 16: Phase space trajectories for b = 8/3, σ = 10, r = 20 with initial
conditions x0 = 24.69, y0 = 24.69, z0 = 38.9

Fig. 17: Phase space trajectories for b = 8/3, σ = 10, r = 20 with initial
conditions x0 = 24.69, y0 = 24.69, z0 = 39.1

Fig. 18: x=f(t) for b = 8/3, σ = 10, r = 24, 5 with initial conditions x0 =
24.69, y0 = 24.69, z0 = 39.1
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Fig. 19: x=f(t) for b = 8/3, σ = 10, r = 24, 5 with initial conditions x0 =
24.69, y0 = 24.69, z0 = 39.1 in smaller time range

Fig. 20: Phase space trajectories for b = 8/3, σ = 10, r = 24, 5 with initial
conditions x0 = 24.69, y0 = 24.69, z0 = 39.1

Fig. 21: Phase space trajectories for b = 8/3, σ = 10, r = 28 with initial
conditions x0 = 1, y0 = 5, z0 = 10
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Fig. 22: x=f(t) for b = 8/3, σ = 10, r = 350 with initial conditions x0 = 1,
y0 = 5, z0 = 10

Fig. 23: Time evolution of projection of phase space trajectories to plane xy
for b = 8/3, σ = 10, r = 350 with initial conditions x0 = 1, y0 = 5, z0 = 10

Fig. 24: Time evolution of projection of phase space trajectories to plane xy
for b = 8/3, σ = 10, r = 28 with initial conditions x0 = 1, y0 = 5, z0 = 10
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Fig. 25: Phase space trajectories for b = 8/3, σ = 10, r = 350 with initial
conditions x0 = 1, y0 = 5, z0 = 10

Fig. 26: Bifurcation diagram for b = 8/3, σ = 10
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1.3 Derivation of Master Equation

As already stated the Markov process is uniquely determined through the
distribution p1(x, t) at time t and the conditional probability p2(x

′, t′ | x, t),
also called transition probability from x at t to x′ at later t′, to determine
the whole hierarchy pn (n ≥ 3) by the Markov property (7). Also these two
functions cannot be chosen arbitrarily, they have to fulfill two consistency
conditions, namely the Chapman–Kolmogorov equation (9)

p2(x
′′, t′′ | x, t) =

∫
p2(x

′′, t′′ | x′, t′) p2(x′, t′ | x, t) dx′ , (56)

the Markov relationship (6)

p1(x
′, t′) =

∫
p2(x

′, t′|x, t) p1(x, t) dx , (57)

and the normalization condition∫
p1(x

′, t′) dx′ = 1 . (58)

The history in a Markov process, given by (7), is very short, only one
time interval from t to t′ plays any role. If the trajectory has reached x at
time t, the past is forgotten, and it moves toward x′ at t′ with a probability
depending on x, t and x′, t′ only. The entire information relevant for the future
is thus contained in the present. A Markov process is a stochastic process
for which the future depends on the past and the present only through the
present. It has no memory. In an ordinary case where the space of states x is
locally homogeneous this gives sense to transform the Chapman–Kolmogorov
equation (9) in an equivalent differential equation in the short time limit
t′ = t + τ with small τ tending to zero. The short time behavior of the
transition probability p2(· | ·) should be written as series expansion with
respect to time interval τ in the form

p2(x, t+ τ | x′′, t) = [1− w̄(x, t)τ ] δ(x− x′′) + τw(x, x′′, t) +O(τ 2) . (59)

The new quantity w(x, x′′, t) ≥ 0 is the transition rate, the probability per
time unit, for a jump from x′′ to x 6= x′′ at time t. This transition rate w
multiplied by the time step τ gives the second term in the series expansion
describing transitions from another state x′′ to x. The first term (with the
delta function) is the probability that no transitions takes place during time
interval τ . Based on the normalization condition∫

p2(x, t+ τ | x′′, t) dx = 1 (60)
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it follows that

w̄(x, t) =

∫
w(x′′, x, t) dx′′ . (61)

The ansatz (59) implies that a realization of the random variable after any
time interval τ retains the same value with a certain probability or attains a
different value with the complementary probability. A typical trajectory x(t)
consists of straight lines x(t) = const interrupted by jumps. 1994).

From Chapman–Kolmogorov equation (9) together with (59) we get

p2(x, t+ τ | x′, t′) =

∫
p2(x, t+ τ | x′′, t)p2(x′′, t | x′, t′) dx′′

=

∫
[1− w̄(x, t)τ ] δ(x− x′′)p2(x′′, t | x′, t′) dx′′

+

∫
τw(x, x′′, t)p2(x

′′, t | x′, t′) dx′′ +O(τ 2) . (62)

With (61) and after taking the short time limit τ → 0 one obtains the
following differential equation

∂

∂t
p2(x, t | x′, t′) =

∫
w(x, x′′, t)p2(x

′′, t | x′, t′) dx′′

−
∫
w(x′′, x, t)p2(x, t | x′, t′) dx′′ . (63)

In order to rewrite the derived equation in a form well known in physical
concepts we get after multiplication by p1(x

′, t′) and integration over x′ the
differential formulation of the Chapman–Kolmogorov equation

∂

∂t
p1(x, t) =

∫
w(x, x′, t)p1(x

′, t) dx′ −
∫
w(x′, x, t)p1(x, t) dx

′ (64)

called master equation in the (physical) literature.

The name ’master equation’ for the above probability balance equation
is used in a sense that this differential expression is a general, fundamental
or basic equation. For a homogeneous in time process the transition rates
w(x, x′, t) are independent of time t and therefore w(x, x′, t) = w(x, x′). The
short time transition rates w have to be known from the physical context,
often like an intuitive ansatz, or have to be formulated based on a reasonable
hypothesis or approximation. With known transition rates w and given initial
distribution p1(x, t = 0) the master equation (64) gives the resulting evolution
of the probability p1 over an infinitely long time period.
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1.4 Master Equation and its Solution

The basic equation of stochastic Markov processes called master equation is
usually written as gain–loss equation (64) for the probabilities p(x, t) in the
form

∂p(x, t)

∂t
=

∫
{w(x, x′)p(x′, t)− w(x′, x)p(x, t)} dx′ . (65)

This very general equation can be interpreted as local balance for the proba-
bility densities which have to fulfill the global normalization condition∫

p(x, t) dx = 1 (66)

at each time moment t, also at the beginning for the initial distribution
p(x, t = 0). The linear master equation (65) with known transition rates
per unit time w(x, x′) is a so–called Markov evolution equation showing the
relaxation from a chosen starting distribution p(x, t = 0) to some final pro-
bability distribution p(x, t → ∞). The linearity of the master equation is
based on the assumption that the underlying dynamics is Markovian. The
transition probabilities w do not depend on the history of reaching a state,
so that the transition rates per unit time are indeed constants for a given
temperature or total energy.

If the state space of the stochastic variable is a discrete one, often consi-
dering natural numbers within a finite range 0 ≤ n ≤ N , the master equation
for the time evolution of the probabilities p(n, t) is written as

dp(n, t)

dt
=
∑
n′ 6=n

{w(n, n′)p(n′, t)− w(n′, n)p(n, t)} , (67)

where w(n′, n) ≥ 0 are rate constants for transitions from n to other n′ 6= n.
Together with the initial probabilities p(n, t = 0) (n = 0, 1, 2, . . . , N) and
the boundary conditions at n = 0 and n = N this set of equations governing
the time evolution of p(n, t) from the beginning at t = 0 to the long–time
limit t → ∞ has to be solved. The meaning of both terms is clear. The
first (positive) term is the inflow current to state n due to transitions from
other states n′, and the second (negative) term is the outflow current due to
opposite transitions from n to n′.

Now let us define stationarity, sometimes called steady state, as a time
independent distribution pst(n) by the condition dp(n, t)/dt|p=pst = 0. The-
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refore the stationary master equation is given by

0 =
∑
n′ 6=n

{
w(n, n′)pst(n′)− w(n′, n)pst(n)

}
. (68)

This equation states the obvious fact, that in the stationary or steady state
regime the sum of all transitions into any state n must be balanced by the
sum of all transitions from n into other states n′. Based on the properties of
the transition rates per unit time the probabilities p(n, t) tend in the long–
time limit to the uniquely defined stationary distribution pst(n), for which
in open systems a constant probability flow is possible. This fundamental
property of the master equation may be stated as

lim
t→∞

p(n, t) = pst(n) . (69)

Now we are discussing the question of in a system without external ex-
change. The condition of equilibrium in closed isolated systems is much stron-
ger than the former condition of stationarity (68). Here we demand as an
additional constraint a balance between each pair of states n and n′ sepa-
rately. This so–called detailed balance relation is written for the equilibrium
distribution peq(n) as

0 = w(n, n′)peq(n′)− w(n′, n)peq(n) . (70)

It always holds for one–step processes in one–dimensional systems with closed
boundaries further considered in our paper. Of course, each equilibrium state
is by definition also stationary. If the initial probability vector p(n, t = 0) is
strongly nonequilibrium, many probabilities p(n, t) change rapidly as soon as
the evolution starts (short–time regime), and then relax more slowly towards
equilibrium (long–time behavior). The final state called thermodynamic equi-
librium is reached in the limit t→∞.

Using linear algebra we want to solve the master equation analytically by
an expansion in eigenfunctions. This method gives us a general solution of
the time dependent probability vector p(n, t) expressed by eigenvectors and
eigenvalues. In a first step we introduce the master equation, written as a set
of coupled linear differential equations (67), in a compact matrix form

dP(t)

dt
= W P(t) , (71)

with a probability vector P(t) = {p(n, t) | n = 0, . . . , N} and an undecom-
posable asymmetric transition matrix W = {W (n, n′) | n, n′ = 0, . . . , N}.
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The elements of the matrix are given by

W (n, n′) = w(n, n′)− δn,n′

∑
m6=n

w(m,n) (72)

and obey the following two properties

W (n, n′) ≥ 0 for n 6= n′ , (73)∑
n

W (n, n′) = 0 for each n′ . (74)

Known from matrix theorythere are a number of consequences based on both
properties. Especially the transition matrix W has a single zero eigenva-
lue whose eigenvector is the equilibrium probability distribution. In general,
other eigenvalues can be complex and they always have negative real part.
In our special case where the detailed balance (70) holds all eigenvalues are
real, as discussed further on.

The solution P(t) of the master equation (71) with given initial vector
P(0) may be written formally as

P(t) = P(0) exp(W t) , (75)

(where exp(W t) =
∑∞

m=0(W t)m/m!) but this does not help us to find P(t)
explicitly.

The familiar method is to make W symmetric and thereby diagonalizable
and then to construct the solution as superposition of eigenvectors uλ related
to (zero or negative) eigenvalues λ in the form

P(t) =
∑
λ

cλuλ eλ t . (76)

with up to now unknown coefficients cλ. Using the condition of detailed
balance (70) we transform the matrix W = {W (n, n′)} to a new symmetric

transition matrix W̃ = {W̃ (n, n′)} with elements given by

W̃ (n, n′)
def
= W (n, n′)

√
peq(n′)

peq(n)
= W̃ (n′, n) . (77)

Both matrices W and W̃ have the same eigenvalues λi. Due to the sym-
metry of matrix W̃, all eigenvalues are real. They may be labeled in order
of decreasing algebraic values, so that λ0 = 0 and λi < 0 for 1 ≤ i ≤ N .
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Denoting the normalized eigenvectors by ui and ũi respectively, defined by
the eigenvalue equations∑

n′

W (n, n′)ui(n
′) = λi ui(n) ; W ui = λi ui (78)∑

n′

W̃ (n, n′) ũi(n
′) = λi ũi(n) ; W̃ ũi = λi ũi (79)

and related by the transformation ui(n) =
√
peq(n) ũi(n) to each other, we

are ready to construct the time dependent solution of the fundamental master
equation (71). According to superposition formula (76), where coefficients cλ
are calculated from the initial condition p(n, 0) at t = 0, the solution is then

p(n, t) =
√
peq(n)

N∑
i=0

ũi(n) eλit

[
N∑
m=0

ũi(m)
p(m, 0)√
peq(m)

]
, (80)

or

p(n, t) =
N∑
i=0

ui(n) eλit

[
N∑
m=0

ui(m)
p(m, 0)

peq(m)

]
. (81)

This solution plays a very important role in the stochastic description of
Markov processes and can be found in different notations (e. g. as integral
representation) in many textbooks.

As time increases to infinity (t→∞) only the term i = 0 in the solution
survives and the probabilities tend to equilibrium P(t)→ Peq, written as

p(n, t) = peq(n) +
N∑
i=1

ui(n) eλit

[
N∑
m=0

ui(m)
p(m, 0)

peq(m)

]
. (82)

In the long–time limit all remaining modes cλuλ eλ t decay exponentially.
In the short–time regime due to combinations of modes with different signs
there is the possibility of growing and subsequent shrinking of transient states
as probability current from initial distribution P(0) to equilibrium Peq via
intermediates P(t).

Master equation dynamics can be studied either by solving the basic equa-
tion analytically with implementation of numerical methods or by simulating
the stochastic process as a large number of subsequent jumps from state to
state with the given transition rates. Both methods have different advanta-
ges and disadvantages. One important point is the choice of the appropriate
time interval called numerical integration step or waiting time in simulati-
on technique. The step size required for a given accuracy is usually smaller
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when time t is closer to zero, and can be enlarged as t grows. Therefore only
a numerical algorithm with an adaptive step size should be used.

1.5 One-step Master Equation for Finite Systems

We are speaking about a one–dimensional stochastic process if the state space
is characterized by one variable only. Often this discrete variable is a particle
number n ≥ 0 describing the amount of molecules in a box or the size of an
aggregate. In chemical physics such aggregation phenomena like formation
and/or decay of clusters are of great interest. To determine the relaxation
dynamics of clusters of size n we take a particularly simple Markov process
with transitions between neighboring states n and n′ = n± 1. This situation
is called a one–step process. In biophysics, if the variable n represents the
number of living individuals of a particular species, the one–step process is
often called birth–and–death process to investigate problems in population
dynamics. The detailed balance relation (70) can be proven for the one–step
process, so that in our case the aforesaid (see Section 1.4) is completely
correct.

Setting the transition rates w(n, n − 1) = w+(n − 1), w(n, n + 1) =
w−(n+1), and therefore also w(n+1, n) = w+(n), w(n−1, n) = w−(n), now
the forward master equation (67) reads

dp(n, t)

dt
= w+(n− 1) p(n− 1, t) + w−(n+ 1) p(n+ 1, t)

− [w+(n) + w−(n)] p(n, t) . (83)

In general the forward and backward transition rates w+(n), w−(n) are
nonlinear functions of the random variable n; the physical dimension of w±
is one over time (s−1). The master equation is always linear in the unknown
probabilities p(n, t) to be at state n at time t. It has to be completed by the
boundary conditions. The nonlinearity refers only to the transition coeffi-
cients. Further on we will pay attention to particles as aggregates in a closed
box or vehicular jams on a circular road. Therefore in finite systems the range
of the discrete variable n is bounded between 0 and N (n = 0, 1, 2, . . . , N).

The general one–step master equation (83) is valid for n = 1, 2, . . . , N−1,
but meaningless at the boundaries n = 0 and n = N . Therefore we have to
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add two boundary equations as closure conditions

dp(0, t)

dt
= w−(1) p(1, t)− w+(0) p(0, t) , (84)

dp(N, t)

dt
= w+(N − 1) p(N − 1, t)− w−(N) p(N, t) . (85)

To solve the set of equations we rewrite (83) as balance equation

dp(n, t)

dt
= J(n+ 1, t)− J(n, t) (86)

with probability current defined by

J(n, t) = w−(n) p(n, t)− w+(n− 1) p(n− 1, t) . (87)

In the stationary regime, remember (68), all flows (87) have to be independent
of n and therefore equal to a constant current of probability: J(n + 1) =
J(n) = J . In open systems the stationary solution is no longer unique, it
depends on the current J .

In finite systems with n = 0, 1, 2, . . . , N one finds a situation with zero
flux J = 0, which corresponds to steady state with a detailed balance rela-
tionship similar to (70). Therefore the stationary distribution pst(n) fulfills
the recurrence relation

pst(n) =
w+(n− 1)

w−(n)
pst(n− 1) . (88)

By applying the iteration successively we get the relation

pst(n) = pst(0)
n∏

m=1

w+(m− 1)

w−(m)
, (89)

which determines all probabilities pst(n) (n = 1, 2, . . . , N) in terms of the
first unknown one pst(0). Taking into account the normalization condition

N∑
n=0

pst(n) = 1 or pst(0) +
N∑
n=1

pst(n) = 1 (90)

the stationary probability distribution pst(n) in finite systems is finally writ-
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ten as

pst(n) =



n∏
m=1

w+(m− 1)

w−(m)

1 +
N∑
k=1

k∏
m=1

w+(m− 1)

w−(m)

n = 1, 2, . . . , N

1

1 +
N∑
k=1

k∏
m=1

w+(m− 1)

w−(m)

n = 0 .

(91)

It is often convenient to write the stationary solution (89) in the exponential
form

pst(n) = pst(0) exp {−Φ(n)} , (92)

where, in analogy to physical systems, the function

Φ(n) =
n∑

m=1

ln

(
w−(m)

w+(m− 1)

)
(93)

is called the potential.

The obtained result (91) based on the zero–flux relationship (88) is a
unique solution for the stationary probability distribution in finite systems
with closed boundaries. For an isolated system the stationary solution of
the master equation pst is identical with the thermodynamic equilibrium peq,
where the detailed balance holds, which for one–step processes reads

w−(n) peq(n) = w+(n− 1) peq(n− 1) . (94)

The condition of detailed balance states a physical principle. If the distri-
bution peq is known from equilibrium statistical mechanics and if one of the
transition rates is also known (e. g. w+ by a reasonable ansatz), the equation
(94) provides the opportunity to formulate the opposite transition rate w− in
a consistent way. By this procedure the nonequilibrium behavior is adequa-
tely described by a sequence of (quasi–)equilibrium states. The relaxation
from any initial nonequilibrium distribution tends always to the known fi-
nal equilibrium. In physical systems the equilibrium distribution usually is
represented in an exponential form

P eq(n) ∝ exp [−Ω(n)/(kBT )] (95)

where Ω(n) is the thermodynamic potential depending on the stochastic va-
riable n, kB is the Boltzmann constant, and T is the temperature. Eq. (95)
is comparable with (92) where Φ(n) = Ω(n)/(kBT ).
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1.6 Stochastic Decay in Finite Systems

Up to now we have considered Markov processes in a more general framework
without defining the states of the system as well as the rates for the tran-
sitions between these states precisely. The particular case, where the states
are characterized by a single particle number n and the rates by a one–step
backward transition w−(n) only, is called decay process.

In a first step we present an example of traffic flow considered as Markov
process. We want to investigate the dissolution of a queue of cars standing
in front of traffic lights. When the lights switch to green, the first car starts
to move. After a certain time interval (waiting time τ = const > 0) the next
vehicle accelerates to pass the stop line and so on. In our model we consider
the decay of traffic congestion without taking into account any influence of
external factors like ramps or intersections on driver’s behavior. The stocha-
stic variable n(t) is the number of cars which are bounded in the jam at time
t. A queue or platoon of n vehicles is also called car cluster of size n.

When the initial jam size is finite, given by the value n(t = 0) = n0

the trajectory n(t) = n0, n0 − 1, . . . , 2, 1, 0 consists of unit jumps at random
times. The jam starting with size n0 becomes smaller and smaller and dis-
solves completely. This one–step stochastic process is a death process only,
sometimes called Poisson process.

Defining p(n, t) as the probability to find a jam of size n at time t, the
master equation for the dissolution process reads

∂

∂t
p(n, t) = w−(n+ 1)p(n+ 1, t)− w−(n)p(n, t) (96)

with the decay rate per unit time assumed as

w(n′, n) = w(n− 1, n) ≡ w−(n) =
1

τ
. (97)

In this approximation the experimentally known waiting time constant τ is a
given control parameter in our escape model. It is a reaction time of a driver,
about 1.5 or 2 seconds, to escape from the jam when the road in front of his
car becomes free. Therefore the transition rate (97) is a constant w− = 1/τ
independent of jam size n.

For the described process of jam shrinkage (n0 ≥ n ≥ 0), starting with
cluster size n = n0 and ending with n = 0, we thus obtain the following
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master equation including boundary conditions (compare (83) – (85))

∂

∂t
p(n0, t) = −1

τ
p(n0, t) , (98)

∂

∂t
p(n, t) =

1

τ
[p(n+ 1, t)− p(n, t)] , n0 − 1 ≥ n > 0 , (99)

∂

∂t
p(0, t) =

1

τ
p(1, t) (100)

and initial probability distribution p(n, t = 0) = δn,n0 . The delta–function
means that at the beginning the vehicular queue consists of exactly n0 cars.

In order to find the explicit expression of the probability distribution
p(n, t) we have to solve the set of equations (98) – (100). This can be done
analytically starting with the first equation, getting p(n0, t) = exp(−t/τ)
as exponential decay function, inserting the solution into the next equation
for p(n0 − 1, t), solving it and continue iteratively up to p(0, t). The general
solution of the probability p(n, t) to observe a car cluster of size n at time t
is

p(n, t) =
(t/τ)n0−n

(n0 − n)!
e−t/τ , 0 < n ≤ n0 , (101)

p(0, t) = 1−
n0−1∑
m=0

(t/τ)m

m!
e−t/τ . (102)

As already mentioned (90), the probabilities are always normalized to unity,
which can be proven by summation

∑n0

n=0 p(n, t) inserting (101, 102) to get
one. The time evolution of the probability p(n, t) has been calculated from
Eqs. (101) and (102) for an initial queue length n0 = 50.

The average or expectation value 〈n〉 of the cluster size n is usually given
by

〈n〉(t) ≡
n0∑
n=0

n p(n, t) =

n0∑
n=1

n p(n, t) (103)

and can be calculated using the known probabilities (101) to get the exact
result

〈n〉(t) = n0Q(n0 − 1, t)− t

τ
Q(n0 − 2, t) (104)

where Q(n, t) is an abbreviation called Poisson term

Q(n, t)
def
= e−t/τ

n∑
m=0

(t/τ)m

m!
. (105)
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The variance or second central moment 〈〈n〉〉(t) which measures the fluctua-
tions is given by

〈〈n〉〉 = 〈(n− 〈n〉)2〉 = 〈n2〉 − 〈n〉2 (106)

and can be also calculated as follows

〈〈n〉〉(t) = n0

[
n0 Q(n0 − 1, t)− 2t

τ
Q(n0 − 2, t)

]
(1−Q(n0 − 1, t))

+

(
t

τ

)2 [
Q(n0 − 3, t)−Q2(n0 − 2, t)

]
+
t

τ
Q(n0 − 2, t) . (107)

In some approximation, where we set Q(n, t) (105) to one, the mean value
(104) reduces to a linearly decreasing function in time

〈n〉(t) ≈ n0 − t/τ , (108)

whereas the variance (107) to a linearly increasing behavior

〈〈n〉〉(t) ≈ t/τ . (109)

In the case of linear mean value approximation (108) the time required, that
the jam dissolves totally, is given by

tend = n0τ . (110)

Equations (108) and (109), however, do not describe the final stage of
dissolution of any finite car cluster. In this case, taking the limit t → ∞ in
the time dependent results (101) and (102), we have

lim
t→∞

p(n, t) = δn,0 . (111)

If we do not consider the final stage of dissolution of a large cluster, i. e.,
if t is remarkably smaller than tend (110), then the probability p(0, t) that the
cluster is completely dissolved is very small. This allows us to obtain correct
results for n > 0 by the following alternative method.

Let us define the generating function G(z, t) by

G(z, t)
def
=
∑
n

znp(n, t) . (112)

According to the actually considered situation, the particular term p(0, t) in
this sum is negligible, so that the lower limit of summation may be taken from
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n = 1 instead of n = 0. The initial condition corresponding to p(n, 0) = δn,n0

is represented by
G(z, 0) = zn0 . (113)

The equation for the generating function is obtained if both sides of the
master equation (99) are multiplied by zn performing the summation over n
afterwards. This yields

∂

∂t
G(z, t) =

1

τ

(
1

z
− 1

)
G(z, t) . (114)

The solution of partial differential equation (114) with respect to the initial
condition (113) is given by

G(z, t) = zn0 exp

[
t

τ

(
1

z
− 1

)]
. (115)

The previous result for p(n, t) at n ≥ 1 (101) is obtained from this equation
after substitution by (112) and expansion of the exponent in z. Starting from
(115)

G(z, t) = zn0 e−t/τ exp

(
t

τ

1

z

)
(116)

the power series is written as follows

G(z, t) =
∑
n

znp(n, t) = zn0 e−t/τ
∑
m

1

m!

(
t

τ z

)m
(117)

= e−t/τ
∑
m

1

m!

(
t

τ

)m
zn0−m (118)

= e−t/τ
∑
n

1

(n0 − n)!

(
t

τ

)n0−n

zn (119)

and therefore we get by comparison of same order terms the Poisson distri-
bution (101)

p(n, t) =
(t/τ)n0−n

(n0 − n)!
e−t/τ . (120)

The above discussed simple model can be improved to describe the disso-
lution of a vehicle queue at a signalized road intersection taking into account
the car dynamics of the starting behavior when red traffic light is switched
to green. The quantity we are interested in is a modified detachment pro-
bability (97) which now depends on the cluster size n. For a long queue the
detachment rate w−(n) has constant value 1/τ consistent with (97). Howe-
ver, due to the time spent for acceleration of the first cars and movement
toward the stop line, the detachment rate is changed for smaller queues.
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1.7 Traffic Jam Formation on a Circular Road

In the following we consider the attachment of a vehicle to the car cluster
and the detachment from it as elementary stochastic events. The traffic thus
is treated as a one–step Markov process described by the general master
equation (83)

∂

∂t
p(n, t) = w+(n− 1) p(n− 1, t) + w−(n+ 1) p(n+ 1, t)

− [w+(n) + w−(n)] p(n, t) . (121)

Now the basic problem is to find an appropriate ansatz for both transition
probabilities w+(n) and w−(n). Note that physical boundary conditions (0 ≤
n ≤ N) for master equation (121) are ensured by formally setting P (−1, t) =
P (N + 1, t) = 0 and w+(N) = w−(0) = 0. The latter two transitions are
impossible physically and they are not included in our further analysis. As
before (97), we assume a constant value for the escape rate w−(n), i. e.,

w−(n) = w− =
1

τ
. (122)

The probability per time unit w+(n) that a vehicle is added to a car cluster of
size n is estimated based on the following physical model. The total number
of cars is N . They are moving along a circular one–lane road of length L. If
a road is crowded by cars, each car requires some minimal space or length
which, obviously, is larger than the real length of a car. We call this the
effective length ` of a car. The distance between the front bumpers of two
neighboring cars, in general, is `+∆x. The distance ∆x can be understood as
the headway between two “effective” cars which, according to our definition,
is always smaller than the real bumper–to–bumper distance. The maximal
velocity of each car is vmax. The desired (optimal) velocity vopt, depending
on the distance between two cars ∆x, is given by the formula

vopt(∆x) = vmax
(∆x)2

D2 + (∆x)2
, (123)

where the parameter D, called the interaction distance, corresponds to the
velocity value vmax/2. According to the ansatz (123) the optimal velocity is
represented by a sigmoidal function with values ranging from 0, correspon-
ding to zero distance between cars, to vmax, corresponding to an infinitely
large distance or absence of interaction between cars. Our assumption is that
a vehicle changes its velocity from vopt(∆xfree) in free flow to vopt(∆xclust) in
jam and approaches the cluster as soon as the distance to the next car (the
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last car in the cluster) reduces from ∆xfree to ∆xclust. This assumption allows
one to calculate the average number of cars joining the cluster per time unit
or the attachment frequency w+(n) to an existing car cluster. Thus, we have
the ansatz valid for 1 ≤ n < N

w+(n) =
vopt(∆xfree(n))− vopt(∆xclust)

∆xfree(n)−∆xclust
. (124)

This equation (124) requires the knowledge of ∆xfree and ∆xclust as a func-
tion of the cluster size n. Measurements on highways have shown that the
density of cars in congested traffic is independent of the size of the dense con-
gested phase (jam). As a consequence, the distance between jammed cars,
the spacing ∆xclust, has a constant value which has to be treated as a given
measured quantity or known control parameter. We have defined the length
of the car cluster or jam size depending on the number of congested cars n
by

Lclust = ` n+ ∆xclust S(n) , (125)

where

S(n) =

{
0 : n = 0

n− 1 : n ≥ 1
(126)

is the number of spacings of size ∆xclust. In such a way, we have for the total
length of road

L = ` n+ ∆xclust S(n)︸ ︷︷ ︸
Lclust

+ `(N − n) + ∆xfree(N − S(n))︸ ︷︷ ︸
Lfree

, (127)

where
Lfree = L− Lclust = L− {` n+ ∆xclust S(n)} (128)

denotes the length of the non–congested or free road. For Lfree we can write
according to (127) also

Lfree = `(N − n) + ∆xfree(N − S(n)) . (129)

Comparing these two equations we obtain for the distance in free flow de-
pending on cluster size

∆xfree(n) =
L− `N −∆xclust S(n)

N − S(n)
. (130)

By this all the transition probabilities (124) are defined except the tran-
sition from the state without any cluster n = 0 to the smallest cluster size
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n = 1. This transition and the meaning of the state with a single conge-
sted car (n = 1) called precluster requires some explanation. Some stochastic
event or perturbation of the free traffic flow, which is represented by n = 0,
is necessary to initiate the formation of a cluster. Such stochastic events
are simulated assuming that one of the free cars can reduce its velocity to
vopt(∆xclust), i. e., become a single congested car or a cluster of size n = 1.
This process is characterized by the transition frequency w+(0) which cannot
be calculated from the ansatz (124), but have to be considered as one of the
control parameters of the model. A cluster of size one appears also when
a two–car cluster is reduced by one car. In this consideration the vehicular
cluster with size n = 1 is a car which still have not accelerated after this
event. In any case, a precluster is defined as a single car moving with the ve-
locity vopt(∆xclust). Since at n = 0 any of the N free cars has an opportunity
to become a single congested car, an appropriate ansatz for the transition
frequency w+(0) is

w+(0) =
p

τ
N , (131)

where p > 0 is a dimensionless constant called the stochastic perturbation
parameter or stochasticity.

In natural sciences and especially in physics it is usually accepted to write
all the basic equations in dimensionless variables. It is suitable to introduce
the dimensionless time T via T = t/τ and the dimensionless distances nor-
malized to `, i. e., ∆y = ∆x/`, d = D/`, ∆yclust = ∆xclust/` and ∆yfree =
∆xfree/`, as well as the dimensionless optimal velocity wopt = vopt/vmax.

Then the basic equations of this section can be rewritten as follows. The
master equation for the scaled probability distribution P (n, T ) instead of
p(n, t):

1

τ

∂

∂T
P (n, T ) = w+(n− 1) P (n− 1, T ) + w−(n+ 1) P (n+ 1, T )

− [w+(n) + w−(n)] P (n, T ) ; (132)

the optimal velocity definition:

wopt(∆y) =
(∆y)2

d2 + (∆y)2
; (133)
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the transition frequencies:

w−(n) = w− =
1

τ
, 1 ≤ n ≤ N , (134)

w+(0) =
1

τ
pN , (135)

w+(n) =
vmax

`

[vopt(∆xfree)− vopt(∆xclust)] /vmax

[∆xfree −∆xclust] /`

=
1

τ
b
wopt(∆yfree(n))− wopt(∆yclust)

∆yfree(n)−∆yclust
, 1 ≤ n ≤ N − 1 (136)

with dimensionless parameter

b = vmaxτ/` ; (137)

and the ansatz for the cluster length and related quantities:

Lclust

`
= n+ ∆yclust S(n) = c−1clust n , (138)

Lfree

`
= N − n+ ∆yfree(N − S(n)) = c−1free (N − n) , (139)

∆yfree(n) =
L/`−N −∆yclust S(n)

N − S(n)
. (140)

According to the definitions, c = `N/L = `% is the total density of cars,
cclust = n `/Lclust and cfree = (N − n)`/Lfree are the densities in jam and in
the free flow, respectively.

In the stochastic approach an equation can be obtained for the average
cluster size 〈n〉. Based on the master equation (83), we get a deterministic
equation for the mean value

d

dt
〈n〉 =

d

dt

∑
n

np(n, t) = 〈w+(n)〉 − 〈w−(n)〉 , (141)

which can be written in a certain approximation as follows

d

dt
〈n〉 ≈ w+(〈n〉)− w−(〈n〉) , (142)

describing the time evolution of the average cluster size 〈n〉. The stationary
cluster size 〈n〉st can be calculated from the condition d〈n〉/dt = 0.
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2 Fokker–Planck Equation

2.1 From Random Walk to Diffusion

The stochastic motion by discrete probabilistic jumps on an (asymmetrically)
Galton board is called random walk. The random walk proceeds by discrete
steps and is described by the diffusion equation in the continuum limit. The
concept of the random walk, also called drunkard’s walk, was introduced into
science by Karl Pearson in a letter to Nature in 1905:

A man starts from a point 0 and walks l yards in a straight line:
he then turns through any angle whatever and walks another l
yards in a straight line. He repeats this process n times. I require
the probability that after these n stretches he is at a distance
between r and r + δr from the starting point 0.

The random walk on a line is much simpler. The positions are spaced
regularly along a line. The walker has two possibilities: either one step to right
(+1) with probability p or one step to left (−1) with probability q = 1 − p.
Symmetric case (pure diffusion) means p = q = 1/2.

The probability P (m,n+ 1) that the walker is at position m after n+ 1
steps is given by the set of probabilities P (m±1, n) after n steps in accordance
with the Markov chain equation (difference equation)

P (m,n+ 1) = pP (m− 1, n) + q P (m+ 1, n) . (143)

The solution of (143) is the binomial distribution

P (m,n) =
n!

[(n+m)/2]! [(n−m)/2]!
p(n+m)/2 q(n−m)/2 . (144)

The first moment of this probability distribution is

〈m〉(n) =
n∑

m=−n

mP (m,n) = 2n

(
p− 1

2

)
(145)

and the second moment is

〈m2〉(n) =
n∑

m=−n

m2P (m,n) = 4npq + 4n2

(
p− 1

2

)2

. (146)

46



Hence, the root–mean–square is given by

σ(n) =
√〈

(m− 〈m〉)2
〉

=

√
〈m2〉 − 〈m〉2 =

√
4npq , (147)

and the relative width (error)

σ

〈m〉
=

√
4np(1− p)

2n(p− 1/2)
=

√
p(1− p)

(p− 1/2)2
1√
n
' n−1/2 (148)

tends to zero when n goes to infinity.

After a series of n steps of equal length the particle (called drunken sailor
as random walker) could be find at any of the following points

m = {−n,−n+ 1, . . . ,−1, 0,+1, . . . , n− 1, n} . (149)

Position m consists of k steps in one direction (success) and n−k in opposite
direction (failure)

m = k − (n− k) = 2k − n . (150)

For the k successes we get

k =
1

2
(n+m) . (151)

Starting with the well–known binomial distribution for discrete probabilities

P (m,n) ≡ B(k, n) =

(
n

k

)
pk(1− p)n−k (152)

we reduce to the symmetric case (p = 1/2)

P (m,n) =
n!

k!(n− k)!

(
1

2

)n
=

n!

[(n+m)/2]! [(n−m)/2]!

(
1

2

)n
. (153)

Further on we introduce (still discrete) coordinate xm = dm and time tn =
τ n, where d is the hopping distance (a length unit) and τ is the time step
(a time unit) and rewrite the binomial distribution (153) as P (xm, tn).

After introducing a new control parameter

D =
d2

τ
, (154)

called diffusion coefficient, we consider the continuum limit where length unit
d and time unit τ both tend to zero in such a way that D remains constant. In
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this case the physically interesting quantity is the probability density p(x, t),
i. e., the probability p(x, t)dx to find a particle within [x, x+ dx] multiplied
by the interval length dx, which equals to 2d.

Taking into account the definition (154), we finally obtain the Gaussian
distribution

p(x, t) =
1√

2πDt
exp

(
− x2

2Dt

)
. (155)

The dynamics of probability density p(x, t) (155) for a one–dimensional
random walk is given by the one–dimensional diffusion equation (partial dif-
ferential equation)

∂p(x, t)

∂t
=
D

2

∂2p(x, t)

∂x2
. (156)

To obtain certain solution, the diffusion equation (156) has to be completed
by initial and boundary conditions. We consider the initial condition p(x, t =
0) = δ(x − 0) given by the delta function (a sharp peak at x = 0), which
physically means that the random walk starts at x = 0, as well as natural
boundary conditions limx→±∞ p(x, t) = 0.

2.2 Derivation of Fokker–Planck Equation

The master equation as well as the Fokker–Planck equation are useful to
describe the time development of the probability density function p(x, t) for
a continuous variable x.

In the following we want to discuss the one–dimensional case in detail.
The Fokker–Planck equation follows from the master equation (65)

∂p(x, t)

∂t
=

+∞∫
−∞

{w(x, x′, t)p(x′, t)− w(x′, x, t)p(x, t)} dx′ (157)

due to the Kramers–Moyal expansion where only the first two leading terms
are retained. In distinction to (65), here we allow as a more general case that
the transition frequencies depend on time t. The derivation can be found in
many textbooks.

By introducing the quantity f(y, x, t) = w(x + y, x, t), the master equa-
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tion (157) can be written as

∂p(x, t)

∂t
=

+∞∫
−∞

{f(y, x− y, t)p(x− y, t)− f(y, x, t)p(x, t)} dy . (158)

It is assumed that f(y, x− y, t) is a smooth function with respect to y. The
basic idea is to expand the quantity f(y, x− y, t)p(x− y, t) in a Taylor series
around y = 0, which yields the Kramers–Moyal expansion

∂p(x, t)

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂xn
[αn(x, t) p(x, t)] , (159)

where

αn(x, t) =

+∞∫
−∞

ynf(y, x, t) dy =

+∞∫
−∞

(x′ − x)nw(x′, x, t) dx′ (160)

are the nth order moments of the transition frequencies w(x′, x, t). Retai-
ning only the first two expansion terms in (159) one obtains the well–known
Fokker–Planck equation in forward notation

∂p(x, t)

∂t
= − ∂

∂x
[α1(x, t) p(x, t)] +

1

2

∂2

∂x2
[α2(x, t) p(x, t)] . (161)

The first term in (161) is called the drift term and the second one – the dif-
fusion or fluctuation term. This is due to the analogy with a drift–diffusion
equation where the first derivative describes the drift of the probability pro-
file without changing its form, whereas the second one describes the pure
diffusion effect. In fact, (161) is a drift–diffusion equation for the probabi-
lity p(x, t). The diffusion or effluence of the probability distribution profile
occurs due to the stochastic fluctuations, therefore the second term in (161)
is also called the fluctuation term. More explicitly Eq. (161) is called the
forward Fokker–Planck equation to distinguish from the backward Fokker–
Planck equation which describes the evolution of the conditional probability
p(x, t | x′, t′) with respect to the initial time t′.
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2.3 How to Solve the Fokker–Planck Equation?

Equation of motion

Study of Fokker–Planck dynamics p(x, t) with known drift f(x) given by

∂p(x, t)

∂t
= − ∂

∂x
[f(x)p(x, t)] +

σ2

2

∂2p(x, t)

∂x2
; p(x, t = 0) = δ(x− x0)

(162)
with natural boundary conditions.

Relationship between drift “force” f(x) (in m s−1) and “potential” V (x)
(in m2s−1):

V (x) = −
∫
f(x) dx ⇐⇒ f(x) = −dV (x)

dx
(163)

f(x) = −αx− βx3 ⇐⇒ V (x) =
α

2
x2 +

β

4
x4 + C (164)

Identity: Stochasticity σ =
√

2D or diffusion coefficient D = σ2/2.

First case: The free particle solution (α = 0, β = 0) is called pure diffusi-
on.

Second case: The linear force system (α > 0, β = 0) has an analytical
solution.

Third case: The nonlinear system with cubic force (β > 0) has numerical
solution only.

Stationary solution

The stationary solution pst(x) is the long time limit of p(x, t) for t→∞ and
follows from

0 =
d

dx
[f(x)pst(x)]− σ2

2

d2pst(x)

dx2
. (165)

Rearrangement gives

0 = − d

dx

[
dV (x)

dx
pst(x) +D

dpst(x)

dx

]
. (166)
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Due to natural boundary conditions we have zero flux

jst(x) ≡ −dV (x)

dx
pst(x)−Ddpst(x)

dx
= C with C = 0 . (167)

We get

dpst(x)

dx
= − 1

D

dV (x)

dx
pst(x) (168)

dpst(x)

pst(x)
= − 1

D
dV (x) (169)

as stationary solution

pst(x) = N−1 exp

[
− 1

D
V (x)

]
(170)

with normalization constant

N =

∫ +∞

−∞
dx exp

[
− 1

D
V (x)

]
. (171)

Time dependent solution

We start with the transformation p(x, t)→ q(x, t) given by

p(x, t) = pst(x)1/2 q(x, t) ≡ N−1/2 exp

[
− 1

D

V (x)

2

]
q(x, t) . (172)

This transformation removes the first derivative in the original Fokker–Planck
equation and generates the following Schrödinger–like equation for the func-
tion q(x, t)

∂q(x, t)

∂t
= −VS(x)q(x, t) +D

∂2q(x, t)

∂x2
(173)

with the so–called Schrödinger potential

VS(x) = −

[
1

2

d2V (x)

dx2
− 1

D

(
1

2

dV (x)

dx

)2
]
. (174)

Using double–well potential

V (x) =
α

2
x2 +

β

4
x4 (175)
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Fig. 27: The solid line shows the potential V (x), the dashed line shows
the Schrödinger potential VS(x). The parameters of both curves are α =
−1.0 s−1, β = 1.0 s−1m−2 and D = 1.0 m2s−1.

we get for the Schrödinger “potential” (in s−1)

VS(x) = −α
2

+

(
1

D

α2

4
− 3

2
β

)
x2 +

1

D

αβ

2
x4 +

1

D

β2

4
x6 . (176)

See Fig. 27 for double well potential.

Next step is superposition ansatz given by

q(x, t) =
∞∑
n=0

an(t)ψn(x) (177)

which can be written as

q(x, t) = pst(x)1/2 +
∞∑
n=1

an(t)ψn(x) (178)

showing a0 = 1 and ψ0(x) = pst(x)1/2.

After inserting ansatz (177) into (173) we get the eigenvalue problem with
eigenfunction ψn(x) and eigenvalue λn ≥ 0

D
d2ψn(x)

dx2
− VS(x)ψn(x) = −λnψn(x) (179)
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and the time dependent coefficients as

an(t) = an(0) exp (−λn t) . (180)

Up to now we have received

q(x, t) =
∞∑
n=0

an(0)e−λn tψn(x) (181)

where normalized orthogonal (or orthonormal) eigenfunctions ψn(x) with∫ +∞

−∞
ψn(x)ψm(x)dx = δnm (182)

from Schrödinger–like eigenvalue equation (Hermitian operator H)

Hψn(x) = λnψn(x) with H = −D d2

dx2
+ VS(x) (183)

and eigenvalue spectrum λ0 = 0 matching the eigenfunction ψ0(x) = p
1/2
st

and all other λn > 0 for n ≥ 1.

Taking into account closure condition (completeness relation)

∞∑
n=0

ψn(x′)ψn(x) = δ(x− x′) (184)

and using the given initial condition

p(x, t = 0) = pst(x)1/2q(x, t = 0) = δ(x− x0) (185)

we get from

δ(x− x0) = pst(x)1/2
∞∑
n=0

an(0)ψn(x) =
∞∑
n=0

ψn(x0)ψn(x) (186)

the up to now unknown coefficients

an(0) = pst(x0)
−1/2ψn(x0) . (187)

Finally the result reads

p(x, t) = pst(x)1/2pst(x0)
−1/2

∞∑
n=0

e−λn tψn(x0)ψn(x) (188)

or

p(x, t) = pst(x) +

√
pst(x)

pst(x0)

∞∑
n=1

e−λn tψn(x0)ψn(x) . (189)
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Summary: task and its result

The task is to solve the one–dimensional Fokker–Planck equation

∂p(x, t)

∂t
+

∂

∂x
j(x, t) = 0 (190)

with flux j(x, t) including given drift f(x) = −dV (x)/dx and constant diffu-
sion coefficient D

j(x, t) = −dV (x)

dx
p(x, t)−D∂p(x, t)

∂x
(191)

getting the probability density p(x, t) taking into account initial condition
p(x, t = 0) = δ(x−x0) and natural boundary conditions limx→±∞ j(x, t) = 0.

The result is

p(x, t) =
ψ0(x)

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)ψn(x) (192)

where the eigenfunctions ψn(x) and eigenvalues λn are determined from the
eigenvalue equation(

−D d2

dx2
+ VS(x)

)
ψn(x) = λn ψn(x) (193)

with Schrödinger potential

VS(x) = −

[
1

2

d2V (x)

dx2
− 1

D

(
1

2

dV (x)

dx

)2
]

(194)

The lowest eigenvalue is always zero (λ0 = 0) and the corresponding eigen-
function is related to the stationary solution via

pst(x) = ψ0(x)2 =
exp (−V (x)/D)∫ +∞

−∞ dx exp (−V (x)/D)
(195)
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Fig. 28: The solid line shows the potential V (x), the dashed line shows the
Schrödinger potential VS(x). The parameters of both curves are α = 1.0 s−1

and D = 1.0 m2s−1.

2.4 The Textbook Example: Linear Drift

The problem of drift under linear force has a well known analytical solution.

Starting with the drift ansatz given by

f(x) = −αx (α > 0) , (196)

the potential (normalized to V (x = 0) = 0) reads

V (x) =
α

2
x2 , (197)

and the Schrödinger potential is also harmonic (quadratic)

VS(x) = −α
2

+
1

D

α2

4
x2 . (198)

See Fig. 28 for single well potential.

The eigenvalue equation

−Dd
2ψn(x)

dx2
+

(
−α

2
+

1

D

α2

4
x2
)
ψn(x) = λn ψn(x) (199)
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is related to the Hermite polynomial differential equation known as

d2ψn(y)

dy2
+
(
2n+ 1− y2

)
ψn(y) = 0 , (200)

with solution

ψn(y) =
1√

2nn!
√
π
e−y

2/2Hn(y) , (201)

where functions Hn(y) with n = 0, 1, 2, . . . are called Hermite polynomials.

Rewriting the 2nd order differential eigenvalue equation (199) we have to
solve

d2ψn(x)

dx2
+

1

D

(
λn +

α

2
− 1

D

α2

4
x2
)
ψn(x) = 0 . (202)

Change of variable x to a new dimensionless variable ξ via√(
1

D

)2
α2

4
x2 = ξ2 or ξ2 =

1

D

α

2
x2 (203)

gives the following second order differential equation

d2ψ(ξ)

dξ2
+

(
2

α
λ+ 1− ξ2

)
ψ(ξ) = 0 , (204)

which is related to the Hermite polynomial differential equation (200).

Therefore comparing allows us to determine the eigenvalues

2

α
λn + 1 = 2n+ 1 =⇒ λn = αn for n = 0, 1, 2, . . . . (205)

Going back from variable ξ to x we know the set of orthonormal eigen-
functions as

ψn(x) =
4

√
1

D

α

2

1√
2nn!
√
π

exp

[
−
(

1

D

α

2

)
x2

2

]
Hn

(√
1

D

α

2
x

)
, (206)

where Hn(y) are Hermite polynomials given by

Hn(y) = (−1)n ey
2 dn

dyn
e−y

2

(207)

H0(y) = 1 ; H1(y) = 2y ; H2(y) = 4y2 − 2 ; . . . (208)

Hn(y) = 2yHn−1(y)− 2(n− 1)Hn−2(y) n = 2, 3, 4, . . . . (209)
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The ground state n = 0 reflects zero eigenvalue λ0 = 0 with

ψ0(x) =
4

√
1

D

α

2

1
4
√
π

exp

[
−
(

1

D

α

2

)
x2

2

]
H0

(√
1

D

α

2
x

)
(210)

where H0

(√
1

D

α

2
x

)
= 1 . (211)

The first excited state n = 1 has eigenvalue λ1 = α with

ψ1(x) =
4

√
1

D

α

2

1√
2
√
π

exp

[
−
(

1

D

α

2

)
x2

2

]
H1

(√
1

D

α

2
x

)
(212)

where H1

(√
1

D

α

2
x

)
= 2

√
1

D

α

2
x . (213)
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Fig. 29: The picture shows the first five eigenfunctions ψ0(x) to ψ4(x). The
order n is equal to the number of nodes. The parameters are α = 1.0 s−1 and
D = 1.0 m2s−1.

Knowing all the eigenvalues λn and the complete set of eigenfunctions
ψn(x) for n = 0, 1, . . . we are able to write immediately the probability density
(in agreement with (192)) as

p(x, t) =
ψ0(x)

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)ψn(x) . (214)
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Fig. 30: The picture shows the time dependent solution p(x, t) taking into
account the first five eigenfunctions only. The four time moments are t =
0.5 s, t = 1.0 s, t = 1.5 s and t → ∞ (solid curve, stationary distribution).
The parameters are x0 = 1.0 m, α = 1.0 s−1 and D = 1.0 m2s−1.

See Fig. 29 for eigenfunctions and Fig. 30 for time evolution.

Taking into account the stationary solution (compare (195)) we get

pst(x) = ψ0(x)2 =
exp (−V (x)/D)∫ +∞

−∞ dx exp (−V (x)/D)
(215)

=

√
α

2πD
exp

[
−
( α

2D

)
x2
]
. (216)

Using the known probability density p(x, t) we want to calculate overall
quantities called moments of m-th order given by

〈x(t)m〉 =

∫ +∞

−∞
xm p(x, t) dx . (217)

The zeroth moment is normalization. In general we are able to proof it
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as follows

〈x(t)0〉 = 〈1〉 =

∫ +∞

−∞
p(x, t) dx (218)

=
1

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)

∫ +∞

−∞
ψ0(x)ψn(x) dx (219)

=

∫ +∞

−∞
ψ0(x)ψ0(x) dx =

∫ +∞

−∞
pst(x) dx = 1 . (220)

The first moment is variable x averaged over the distribution p(x, t). We
get

〈x(t)1〉 = 〈x(t)〉 =

∫ +∞

−∞
x p(x, t) dx (221)

=
1

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)

∫ +∞

−∞
xψ0(x)ψn(x) dx (222)

and calculate the first two contributions in detail.
The term n = 0 with λ0 = 0 gives zero

ψ0(x0)

ψ0(x0)

∫ +∞

−∞
xψ0(x)2 dx =

∫ +∞

−∞
x pst(x) dx = 0 (223)

due to asymmetry.
The term n = 1 with λ1 = α gives

ψ1(x0)

ψ0(x0)
e−αt

∫ +∞

−∞
xψ0(x)ψ1(x) dx = x0 e

−αt (224)

as the only nonvanishing contribution.

Hint: Use ∫ +∞

−∞
x2e−ax

2

dx =

√
π

2 a3/2
(225)

Hint: Use ∫ +∞

−∞
x
dn

dxn
e−ax

2

dx = 0 ; n = 2, 3, . . . (226)

Therefore, the time dependent first moment (mean) is calculated as

〈x(t)〉 = x0 exp (−αt)→ 0 if t→∞ . (227)
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The second moment is x2 averaged over the distribution p(x, t). We get

〈x(t)2〉 = 〈x(t)〉 =

∫ +∞

−∞
x2 p(x, t) dx (228)

=
1

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)

∫ +∞

−∞
x2ψ0(x)ψn(x) dx (229)

and calculate the first three contributions in detail.
The term n = 0 with λ0 = 0 gives a finite value

ψ0(x0)

ψ0(x0)

∫ +∞

−∞
x2 ψ0(x)2 dx =

∫ +∞

−∞
x2pst(x) dx =

D

α
. (230)

The term n = 1 with λ1 = α gives zero due to asymmetry.
The term n = 2 with λ1 = 2α gives

ψ2(x0)

ψ0(x0)
e−2αt

∫ +∞

−∞
x2ψ0(x)ψ2(x) dx =

(
x20 −

D

α

)
e−2αt . (231)

All other terms do not contribute.

Therefore, the time dependent second moment is given as

〈x(t)2〉 = x20 exp (−2αt) +
D

α
(1− exp (−2αt)) . (232)

We get for the variance

〈x(t)2〉 − 〈x(t)〉2 =
D

α
(1− exp (−2αt))→ D

α
if t→∞ . (233)

Remark:
If we want to treat the limit case called pure diffusion, we have to consider
the situation that the control parameter α tends to zero (α → 0). For the
moments we get easily 〈x(t)〉 = x0 and 〈x(t)2〉 → ∞.

But how to get the known probability density for the case α = 0

p(x, t) =
1√

4πDt
exp

[
−(x− x0)2

4Dt

]
(234)

from the calculated density p(x, t) given by (214) with eigenvalues λn = αn
and eigenfunctions ψn(x) (206) including Hermite polynomials Hn(x)? The
values Hn(0) are called Hermite numbers.
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Some more details who to solve the differential equation (204) named
after Hermite

d2ψ(ξ)

dξ2
+

(
2

α
λ+ 1− ξ2

)
ψ(ξ) = 0 (235)

by power series expansion. We start with the ansatz

ψ(ξ) = h(ξ)e−ξ
2/2 with ψ(ξ → ±∞)→ 0 (236)

and after inserting we get the following differential equation

d2h(ξ)

dξ2
− 2ξ

dh(ξ)

dξ
+

2

α
λh(ξ) = 0 . (237)

Here we try a power series for the unknown function

h(ξ) =
∞∑
i=0

aiξ
i (238)

using

dh(ξ)

dξ
=
∞∑
i=1

aiiξ
i−1 =

∞∑
j=0

aj+1(j + 1)ξj (239)

d2h(ξ)

dξ2
=
∞∑
i=2

aii(i− 1)ξi−2 =
∞∑
j=0

aj+2(j + 2)(j + 1)ξj . (240)

After inserting we get

∞∑
j=0

aj+2(j + 2)(j + 1)ξj − 2
∞∑
j=0

aj+1(j + 1)ξj+1 +
2

α
λ

∞∑
j=0

ajξ
j = 0 (241)

or
∞∑
i=0

ξi
{
ai+2(i+ 2)(i+ 1)− 2aii+

2

α
λai

}
= 0 . (242)

To fulfill this equation we arrive at the mapping

ai+2 =
2i− (2/α)λ

(i+ 2)(i+ 1)
ai (243)

which is a iteration of the following type:
If you know a0, a2 follows, a4 follows, etc,
If you know a1, a3 follows, a5 follows, etc.
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Due to natural boundary conditions the power series has to be finite

hn(ξ) =
n∑
i=0

a
(n)
i ξi (244)

and the iteration will be truncated at a
(n)
n by a

(n)
n+2 = 0. From

0 =
2n− (2/α)λ

(n+ 2)(n+ 1)
a(n)n (245)

we find the condition for the eigenvalue λ with its spectrum

2n− 2

α
λ = 0 =⇒ λn = αn . (246)

Now we will explore the ground state n = 0 in detail. Since the ground
state eigenvalue is zero λ0 = 0, the solution p(x, t) refers to the stationary
situation pst(x) = p(x, t→∞) (216).

From h0(ξ) =
∑n=0

i=0 a
(n)
i ξi = a

(0)
0 ξ0 = a

(0)
0 we get ψ0(ξ) = h0(ξ)e

−ξ2/2 =

a
(0)
0 e−ξ

2/2. Doing inverse transformation from ξ to x we have so far

ψ0(x) = a0 exp

[
−
(

1

D

α

2

)
x2

2

]
. (247)

The unknown coefficient a
(0)
0 can be calculated from orthonormality condition∫ ∞

−∞
ψ0(x)ψ0(x) dx = 1 =⇒ a

(0)
0 =

4

√
1

π

1

D

α

2
. (248)

It gives the normalized ground state eigenfunction (see (210))

ψ0(x) =
4

√
1

π

1

D

α

2
exp

[
−
(

1

D

α

2

)
x2

2

]
. (249)

Now we will explore the first excited state n = 1 with eigenvalue λ1 = α
in more detail.
From h1(ξ) =

∑n=1
i=0 a

(n)
i ξi = a

(1)
0 ξ0 + a

(1)
1 ξ1 = a

(1)
0 + a

(1)
1 ξ we get ψ1(ξ) =

h1(ξ)e
−ξ2/2 = a

(1)
0 e−ξ

2/2 + a
(1)
1 ξ e−ξ

2/2.

The unknown coefficients a
(1)
0 and a

(1)
1 should be determined from the ortho-

normalization condition. From∫ ∞
−∞

ψ0(x)ψ1(x) dx = 0 (250)
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we find out via∫ ∞
−∞

(
1

D

α

2

)−1/2
dξ
{
a
(0)
0 e−ξ

2/2
}{

a
(1)
0 e−ξ

2/2 + a
(1)
1 ξe−ξ

2/2
}

= 0 (251)

the result a
(1)
0 = 0.

From ∫ ∞
−∞

ψ1(x)ψ1(x) dx = 1 (252)

we find out via

a
(1)
1

2
∫ ∞
−∞

(
1

D

α

2

)−1/2
dξ
{
ξe−ξ

2/2
}2

= 0 (253)

the result a
(1)
1 = 4

√
1
D
α
2
1
π

√
2 .

The eigenfunction of first order reads

ψ1(x) =
4

√
1

D

α

2

1

π

√
1

D

α

2

1√
2

2x exp

[
− 1

D

α

2

x2

2

]
. (254)

Now we will start to explore the second excited state n = 2 with eigen-
value λ2 = 2α to some extend.
From h2(ξ) =

∑n=2
i=0 a

(n)
i ξi = a

(2)
0 ξ0 + a

(2)
1 ξ1 + a

(2)
2 ξ2 we get

ψ2(ξ) = h2(ξ)e
−ξ2/2 = a

(2)
0 e−ξ

2/2 + a
(2)
1 ξ e−ξ

2/2 + a
(2)
2 ξ2e−ξ

2/2.

The coefficient a
(2)
2 is given by a

(2)
0 via recurrence formula

a
(2)
2 =

−2/α · 2α
2 · 1

a
(2)
0 = −2a

(2)
0 . (255)

So far we have

ψ2(ξ) = a
(2)
0 e−ξ

2/2 + a
(2)
1 ξe−ξ

2/2 − 2a
(2)
0 ξ2e−ξ

2/2

= a
(2)
0

(
1− 2ξ2

)
e−ξ

2/2 + a
(2)
1 ξe−ξ

2/2 (256)

and together with known eigenfunctions

ψ1(ξ) = a
(1)
1 ξ e−ξ

2/2 (257)

ψ0(ξ) = a
(0)
0 e−ξ

2/2 (258)

we get ∫ ∞
−∞

ψ2(x)ψ1(x) dx = 0 =⇒ a
(2)
1 = 0 (259)
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and since ∫ ∞
−∞

ψ2(x)ψ2(x) dx = 1 =⇒ a
(2)
0 = . . . 6= 0 (260)

finally
ψ2(ξ) = a

(2)
0

(
1− 2ξ2

)
e−ξ

2/2 . (261)
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3 Langevin Equation

3.1 Traditional View on the Langevin Equation

Langevin equation describes the dynamics of a system in presence of an inter-
action with environment. For simplicity here we consider a one–dimensional
case, where the state of the system is characterized by a scalar quantity x(t)
which depends on time t. The time evolution is described by the Langevin
equation

dx

dt
= f(x) + ψ(x) ξ(t) (262)

together with the initial condition

x(t = 0) = x0 . (263)

Here the dynamics of the system itself is given by the deterministic force
f(x), whereas the interaction with the environment is represented by the
stochastic or Langevin force ψ(x)ξ(t), where ψ(x) is the noise intensity. If
the latter one is constant then the Langevin force represents an additive noise.
The intensity ψ(x) may depend on x in general. In this case we deal with the
so–called multiplicative noise. In the classical case ξ(t) is the Gaussian white
noise, representing random and normally distributed fluctuations, which are
completely uncorrelated for different time moments.

It is important to notice, however, that other kind of noise ξ(t) also may
be of interest. For example, the Markovian dichotomous noise represents a
stochastic process of switching between two discrete values. This type of noi-
se is frequently used for modeling of various phenomena in biology, physics,
and chemistry. States of the dichotomous process can be associated, e. g.,
with two different levels of external stimuli, presence or absence of an ex-
ternal perturbation, etc. It is interesting to mention that a combination of
dichotomous and white noise can lead to a bimodal probability distributi-
on even in a system with single–well potential φ(x) = αx2/2 or linear force
f(x) = −dφ/dx. Thus, the noise can significantly change the behavior of a
system. In this sense we can speak about noise–induced phase transitions.

3.2 Additive White Noise

Historically, the Langevin equation has been designed to describe the Brow-
nian motion, assuming ψ(x) = σ in (262) as a constant. This is the usual
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case of the Langevin equation with the additive noise

dx

dt
= f(x) + σξ(t) . (264)

In general, ξ(t) is a randomly fluctuating quantity. Traditionally it is the
white noise, which has the following properties

〈ξ(t)〉 = 0 , (265)

〈ξ(t)ξ(t′)〉 = δ(t− t′) . (266)

The equation (264) can be formulated as a stochastic differential equation
with the initial condition (263). It is the conventional form of writing used
in mathematical literature, i. e.,

dx(t) = f(x(t))dt+ σ dW (t) ; x(t = 0) = x0 , (267)

where W (t) is the standard Wiener process with the following properties

〈W (t)〉 = 0 , (268)

〈W (t)W (t′)〉 = min(t, t′) . (269)

For the increments of the Wiener process dW (t) = W (t + dt) − W (t) at
dt→ 0 we have

〈dW (t)〉 = 0 , (270)

〈dW (t)dW (t′)〉 =

{
dt , t′ = t
0 , t′ 6= t

(271)

The formal relation between the Wiener process and the Langevin force
is given by

ξ(t) =
dW (t)

dt
⇐⇒ W (t) =

t∫
0

ξ(s)ds . (272)

Here we would like to mention that the formal solution of (267) is

x(t) = x0 +

t∫
0

f(x(s))ds+ σW (t) . (273)

This, however, is only a different formulation of the problem by rewriting the
stochastic differential equation (267) as an integral equation (273). Since the
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right hand side of (273) contains the unknown function x(s), it cannot serve
as a solution in practical applications.

The probability density distribution p(x, t) for the variable x at time t is
given by the following Fokker–Planck equation which corresponds to (264)
or (267) respectively

∂

∂t
p(x, t) = − ∂

∂x
[f(x)p(x, t)] +

σ2

2

∂2p(x, t)

∂x2
(274)

with the initial condition

p(x, t = 0) = δ(x− x0) . (275)

The averages over ensemble of stochastic realizations, like the mean value
〈x(t)〉 and the correlation function 〈x(t)x(t′)〉, can be expressed in terms of
the probability distribution functions as

〈x(t)〉 =

∞∫
−∞

xp(x, t)dx , (276)

〈x(t)x(t′)〉 =

∞∫
−∞

∞∫
−∞

xy p(x, t; y, t′) dxdy . (277)

Here p(x, t; y, t′) is the joint probability density for two time moments.

Returning to the Langevin equation (264), first let us consider the dyna-
mics without fluctuations, which is given by the equation with σ = 0,

dx

dt
= f(x) . (278)

The force can be represented as

f(x) = −dφ(x)

dx
, (279)

where φ(x) is the potential. A simple classical example is the double–well
potential

φ(x) =
α

2
x2 +

β

4
x4 , (280)

where β > 0. It has one minimum if α > 0 and two minima if α < 0. The
corresponding force is

f(x) = −αx− βx3 . (281)
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The stationary solutions of (278) are the roots of the equation f(x) = 0 or
the extremum points of the potential φ(x). They are given by

x(α + βx2) = 0 . (282)

One root always is x0 = 0. At α ≥ 0 this is the only real solution. At
α < 0, two other real solutions appear x1,2 = ±

√
−α/β corresponding to

two minima of the potential. The solution x0 = 0 corresponds to the only
minimum of the potential at α > 0, which is changed to the maximum at α <
0. Minimum of φ(x) always corresponds to a stable, whereas maximum to an
unstable solution of (278), as it follows from the stability analysis considering
small deviations from the extremum point. These solutions depending on
the parameter α represent the so–called supercritical bifurcation diagram. It
is called supercritical, since the stable branches merge continuously at the
bifurcation point α = 0.

A bifurcation diagram of an other kind emerges for the potential

φ(x) =
α

2
x2 +

β

4
x4 +

γ

6
x6 (283)

with β < 0 and γ > 0. It corresponds to

f(x) = −αx− βx3 − γx5 . (284)

In this case the equation f(x) = 0 has five roots, some of which may be
complex. One solution is x0 = 0. The other four roots are given by

x1,2,3,4 = ±

√√√√− β

2γ
±

√(
β

2γ

)2

− α

γ
. (285)

Only the real solutions have physical meaning. Besides, the solutions cor-
responding to the minima of the potential are stable, whereas those repre-
senting the maxima are unstable. At α > β2/(4γ) the only real solution is
x0 = 0. All five solutions are real within 0 ≤ α ≤ β2/(4γ). Three of them, in-
cluding x0 = 0, are stable and correspond to three minima of φ(x). The other
two roots represent two local maxima in between. At α = 0, the minimum at
x = 0 transforms into the maximum and two other maxima disappear. Thus,
at α < 0 there are two stable solutions and one unstable solution x0 = 0.
This is the corresponding so–called subcritical bifurcation diagram.

In distinction to the supercritical bifurcation diagram here the stable
nonzero branches start at certain nonzero x values at α = β2/(4γ), where
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the x0 = 0 branch still is stable. Therefore the system cannot switch to
these nonzero branches if the initial x value is near zero. In the deterministic
dynamics it first happens with a jump only at α = 0 if α is decreased. If
α is increased, starting from negative values, then a jump from one of the
nonzero stable solutions to the zero solution occurs at α = β2/(4γ) > 0. In
other words, a hysteresis is observed.

The behavior of the dynamical system in the case of supercritical as well
as subcritical bifurcation is essentially changed by the noise included in the
Langevin equation (264). Due to the noise, the system with potential (280)
can be randomly switched between two stable states x1,2 = ±

√
−α/β at

α < 0, which is never possible in the deterministic dynamics. Similarly, in
the system with potential (283), the noise enables a switching between three
stable states within 0 ≤ α ≤ β2/(4γ), or between two stable branches of the
bifurcation diagram at α < 0. Considering an ensemble of different stocha-
stic realizations of the process ξ(t), the Langevin equation (264) allows to
calculate the probability density p(x, t) to have certain value of x at time
t. The stationary probability density pst(x) = limt→∞ p(x, t) is given by the
stationary solution of the corresponding Fokker–Planck equation (274), i. e.,

pst(x) =
e−2φ(x)/σ

2

∞∫
−∞

e−2φ(x)/σ2dx

. (286)

3.3 Brownian Motion in Three–Dimensional Velocity
Space

Consider first a deterministic motion of a Brownian particle with initial ve-
locity v(t = 0) = v0 in a medium (liquid) with friction. Here velocity is a
three–dimensional vector. Its time evolution is described by the equation

dv(t)

dt
= −γv(t) , (287)

where γ is the friction coefficient. The solution reads

v(t) = v0e
−γt . (288)

Thus, in this simple model the particle reduces asymptotically its velocity
to zero due to the friction. This equation, however, does not completely
describe the motion of a particle in liquid. One needs to take into account
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the randomness caused by stochastic collisions with liquid molecules, which
never allow to relax the velocity to zero. This effect is described by the
Langevin equation

dv(t)

dt
= −γv(t) +

√
2B ξ(t) , (289)

where (287) is completed by a stochastic (Langevin) force
√

2B ξ(t). Here B
is the diffusion coefficient in the velocity space and ξ(t) is a three–dimensional
vector with components ξi(t), representing a stochastic process. The actual
Brownian motion in the space of velocity v and coordinate x is known as the
Ornstein–Uhlenbeck process.

The stochastic force should have the following properties.

1. Each component of the stochastic force has zero mean value

〈ξi(t)〉v0 = 0 , (290)

where the symbol v0 indicates that only those stochastic realizations are
considered for which v(t = 0) = v0 holds. It means that the stochastic
force has no influence on the averaged motion.

2. The Langevin force is the Gaussian stochastic process, which means
that all higher order correlation functions reduce to the two–time cor-
relation function 〈ξi(t1)ξj(t2)〉v0 according to

〈ξ(t1)ξ(t2) · · · ξ(t2n)〉v0 =
∑

all pairings

〈ξ(ti)ξ(tj)〉v0 · · · 〈ξ(tk)ξ(tl)〉v0 .

(291)
Like the first moment (290), all odd–order moments are zero.

3. The 〈ξi(t)ξj(t′)〉v0 function is δ–correlated in time

〈ξi(t)ξj(t′)〉v0 = δijδ(t− t′) . (292)

Besides, this formula implies that different components are uncorrelated
or statistically independent.

4. The stochastic process for the velocity v(t) of the Brownian particle
is statistically independent of the stochastic force

√
2B ξ(t′) for t′ > t,

i. e., v(t) at a given time moment is independent of the stochastic force
in future:

〈v(t)ξ(t′)〉v0 = 0 for t′ > t . (293)

The velocity v(t), naturally, will be affected by ξ(t′) at t′ < t.
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In the following we consider two different ways to get the solution of the
Langevin equation (289) – by direct integration. The direct integration yields
a formal solution for each specific realization of the stochastic process ξ(t),

v(t) = v0e
−γt + e−γt

t∫
0

eγt
′√

2B ξ(t′) dt′ , (294)

as it can be verified by inserting (294) into (289). This solution allows us to
calculate moments of the velocity distribution for the ensemble of all stocha-
stic realizations with given initial velocity v0. The first moment is

〈v(t)〉v0 = v0e
−γt + e−γt

t∫
0

eγt
′√

2B 〈ξ(t′)〉v0dt
′ . (295)

The last term vanishes, since the Langevin force has zero mean value, as
discussed above. Thus we have

〈v(t)〉v0 = v0e
−γt . (296)

The correlation function 〈v(t)v(t′)〉v0 for velocities at different time moments
also can be calculated in this way. Alternatively, the correlation function can
be defined for deviations from the mean values as 〈(v(t) − 〈v(t)〉)(v(t′) −
〈v(t′)〉)〉v0 . Both definitions are equivalent for long times, where the mean
velocity 〈v(t)〉v0 tends to zero. For definiteness we assume that t′ > t holds.
Then for any velocity component we have

〈vi(t)vi(t′)〉v0 = v2i,0 e
−γ(t′+t) + 2Be−γ(t

′+t)

t∫
0

t′∫
0

e+γ(s
′+s)〈ξi(s)ξi(s′)〉dsds′

= v2i,0 e
−γ(t′+t) + 2Be−γ(t

′+t)

t∫
0

eγ(s+s)ds

= v2i,0 e
−γ(t′+t) +

B

γ

(
e−γ(t

′−t) − e−γ(t′+t)
)
. (297)

By using the definition of scalar product, the correlation function 〈v(t)v(t′)〉v0

is easily calculated from (297) as

〈v(t)v(t′)〉v0 =
∑
i

〈vi(t)vi(t′)〉v0 . (298)
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The second moment for each velocity component is obtained from (297)
by setting t′ = t, i. e.,

〈v2i (t)〉v0 = v2i,0 e
−2γt +

B

γ

(
1− e−2γt

)
. (299)

Apart from the mean values, the probability density p(vx, vy, vz, t) in the
three–dimensional velocity space also is of interest. Taking into account that
the velocity components in (289) are not coupled, their probability distribu-
tions are independent, and we have

p(vx, vy, vz, t) = p(vx, t) p(vy, t) p(vz, t) , (300)

where p(vx, t), p(vy, t), and p(vz, t) are the probability densities for one com-
ponent. The latter ones can be calculated by solving the corresponding
Fokker–Planck equation for one–dimensional problem. Here we only report
the result

p(vi, t) =
1√

2πσ2(t)
exp

[
−(vi − vi,0 exp[−γt])2

2σ2(t)

]
, (301)

where i = x, y, z denotes the i-th component of vector v and

σ2(t) = 〈v2i 〉 − 〈vi〉2 =
B

γ
(1− exp[−2γt]) (302)

is the variance consistent with (296) and (299).

For large times t the initial state (velocity v0) is forgotten and the final
equilibrium state is given by

lim
t→∞
〈v2i (t)〉v0 = B/γ . (303)

On the other hand, it is well known that

〈v2i 〉 =
kBT

m
(304)

holds in the equilibrium of a classical system. Comparing (303) and (304) we
arrive to the relation

B

γ
=
kBT

m
(305)

known as the Einstein formula. It relates the macroscopic quantity (fricti-
on coefficient) γ, which describes the dissipation of the momentum, to the
microscopic quantity (diffusion coefficient) B, which describes the stochastic
force.
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3.4 Stochastic Differential Equations

As a starting point we consider the one–dimensional stochastic differential
equation for the variable x, which can be, e. g., the coordinate of a particle
performing random walk in one dimension. The motion of particle is described
by the stochastic differential equation (SDE)

dx(t) = a(x) dt+ bη(x) dW (t) , (306)

where a(x) and bη(x) are given functions of x, dx(t) = x(t + dt) − x(t) is
the increment of x in the time interval from t to t + dt, whereas dW (t) =
W (t+dt)−W (t) is the increment of the standard Wiener process having the
properties 〈dW (t)〉 = 0 and 〈(dW (t))2〉 = dt. Later on, the Wiener process
will be discussed in detail. This equation (306), written in the form (262)

dx

dt
= a(x) + bη(x) ξ(t) , (307)

is known as Langevin equation. The Langevin force, formally ξ(t) = dW (t)/dt,
has to be understood as a fluctuating quantity having the Gaussian distri-
bution

p(ξ(t)) =

√
dt

2π
exp

[
−dt

2
ξ2
]

(308)

with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). According to the formal sub-
stitution ξ(t) = dW (t)/dt we should have the variance which diverges like
〈ξ(t)2〉 = 1/dt → ∞ at dt → 0. The above incorrect substitution dW (t) =
ξ(t)dt however represents only a formal way of writing and has no rigorous
mathematical meaning, since stochastic trajectories are not differentiable.

An important peculiarity of the stochastic differential equations (306)
and of the Langevin equation (307) is that their solution essentially depends
on that how the coefficient bη(x) at the noise term is defined. Namely, it is
important whether this coefficient is determined at x = x(t), x = x(t+dt), or
at x in some intermediate time moment. The parameter η is introduced to di-
stinguish between these cases. Different possibilities can be chosen according
to

bη(x) = b(x(t+ η dt)) . (309)

The case η = 0, when the coefficient b is determined at the left border of
the integration interval [t, t+ dt], is called Ito stochastic process. In the case
of Stratonovich process, where η = 1/2, it is determined in the middle of
the interval. Finally, if bη(x) is determined at the right border t + dt, which
corresponds to η = 1, then we deal with Hänggi–Klimontovich process.
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Alternatively, one can define the coefficient bη′(x) as

bη′(x) = b((1− η′)x(t)) + η′ x(t+ dt)) . (310)

The two definitions (309) and (310) are identical at η = η′ = 0 and η = η′ = 1.
For arbitrary stochastic trajectory x(t), however, the relation between η and
η′ is different if 0 < η < 1.

The solution of the stochastic differential equation of Ito type (Ito–SDE)

dx(t) = a[x(t)]dt+ b[x(t)]dW (t) (311)

is represented by the Ito stochastic integral

x(t) = x(t0) +

t∫
t0

a[x(t′)]dt′ +

t∫
t0

b[x(t′)]dW (t′) . (312)

Eq. (311) thus has unique solution (312) which is a Markov process.

The probability density p(x, t) for finding the particle at a position x at
time moment t is given by the Fokker–Planck equation with general η

∂

∂t
p =

∂

∂x

{
−a(x)p+

1

2
b(x)2η

∂

∂x

[
b(x)2(1−η)p

]}
. (313)

The stationary solution of (313) reads

pst(x) =
C

b(x)2(1−η)
exp

[
2

∫ x

dy
a(y)

b(y)2

]
(314)

with integration constant C given by the normalization condition∫
pst(x)dx = 1.

In the case of Ito stochastic calculus (integration at left border), the
stochastic differential equation (311) in typical notations is written as

dx(t) = a(x) dt+ b(x) dW (t) , (315)

and the corresponding Fokker–Planck equation reads

∂p

∂t
=

∂

∂x

{
−a(x)p+

1

2

∂

∂x

[
b(x)2p

]}
(316)

= − ∂

∂x
[a(x)p] +

1

2

∂2

∂x2
[
b(x)2p

]
. (317)
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To distinguish from Ito–SDE, the Stratonovich–SDE (integration at midd-
le) in these notations is written using special symbol ◦

dx(t) = a(x) dt+ b(x) ◦ dW (t) . (318)

The corresponding Fokker–Planck equation is

∂p

∂t
=

∂

∂x

{
−a(x)p+

1

2
b(x)

∂

∂x
[b(x)p]

}
. (319)

One has to take into account that deviations from the usual differentiation
rules take place at η 6= 1/2. It is important when making a transformation of
variable y = g(x)⇐⇒ x = g−1(y). The transformed Langevin equation then
reads

dy

dt
= ã(y) + b̃η(y) ξ(t) (320)

or
dy = ã(y) dt+ b̃η(y) dW (t) (321)

with coefficients

ã(y) = g′(x) a(x) +

(
1

2
− η
)
g′′(x) b(x)2 , (322)

b̃(y) = g′(x) b(x) , (323)

where g′ = dg/dx.

3.5 Arithmetic Brownian Motion

The standard Brownian motion is defined as constant drift function together
with white noise already known from the Wiener process

dx(t) = a dt+ b dW (t) (324)

together with following initial conditions x(t = 0) = x0 and W (t = 0) = 0.

Simple integration gives the solution

x(t) = x0 + at+ bW (t) . (325)

The probability distribution function thus is Gaussian, i. e.,

p(x, t) =
1√

2πb2t
exp

(
−(x− x0 − at)2

2b2t

)
. (326)
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It is a solution of the Fokker–Planck equation (313) with η = 0

∂

∂t
p(x, t) = −a ∂

∂x
p(x, t) +

b2

2

∂2

∂x2
p(x, t) . (327)

From (326) we obtain directly the first two moments

〈x(t)〉 = x0 + at (328)

〈x(t)2〉 = 〈x(t)〉2 + b2t . (329)

3.6 Geometric Brownian Motion

The stochastic differential equation with linear drift and multiplicative noise
term is called geometric Brownian motion. It has a wide applicability in
financial modelling and is given in Ito notation by

dx(t) = a x(t) dt+ b x(t) dW (t) (330)

with typical initial conditions x(t = 0) = x0 > 0 and W (t = 0) = 0. It is a
special case of the Ito–SDE (315) with a(x) = ax and b(x) = bx.

In the following we will use the transformation

y(x) = ln

(
x

x0

)
, (331)

where x0 = x(t = 0). According to (321) we have

dy(t) = ã(y) dt+ b̃(y) dW (332)

with

ã(y) =
dy

dx
a(x) +

1

2

d2y

dx2
b(x)2 (333)

b̃(y) =
dy

dx
b(x) . (334)

Here

y′ ≡ dy

dx
=
x0
x

1

x0
=

1

x
; y′′ = − 1

x2
,

and hence we have ã(y) = a−b2/2 and b̃(y) = b. Consequently, the stochastic
differential equation for the transformed variable y(t) reads

dy(t) = d lnx(t) =

(
a− b2

2

)
dt+ b dW (t) , (335)
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Integrating both sides the solution results in

x(t) = x0 exp

{(
a− b2

2

)
t+ bW (t)

}
(336)

The probability density for the variable y(t) is given by the Gaussian
distribution

p̃(y, t) =
1√

2π b2t
exp

[
−(y − (a− b2/2)t)

2

2b2t

]
. (337)

The probability distribution p(x, t) for the original variable is easily calcula-
ted according to

p(x, t) = p̃(y, t)
dy

dx
=

1

x
p̃(ln[x/x0], t) . (338)

It yields the log–normal distribution

p(x, t) =
1√

2π b2t

1

x
exp

[
−(ln[x/x0]− (a− b2/2)t)

2

2b2t

]
. (339)

This distribution is a solution of the following Fokker–Planck equation

∂

∂t
p(x, t) = − ∂

∂x
[ax p(x, t)] +

1

2

∂2

∂x2
[
b2x2 p(x, t)

]
=
(
b2 − a

)
p+

(
2b2 − a

)
x
∂p

∂x
+

1

2
(bx)2

∂2p

∂x2
. (340)

The mean value (first moment) of (339) is calculated as follows

〈x(t)〉 =

∞∫
0

xp(x, t) dx =

∞∫
0

xp̃(y, t)
dy

dx
dx = x0

∞∫
−∞

eyp̃(y, t)dy

=
x0√
2πb2t

∞∫
−∞

exp

(
y − (y − [a− b2/2] t)

2

2b2t

)
dy

=
x0e

at

√
2πb2t

∞∫
−∞

exp

(
−(y − [a+ b2/2] t)

2

2b2t

)
dy

= x0e
at 1√

2πb2t

∞∫
−∞

exp

(
− z2

2b2t

)
dz = x0e

at . (341)
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It increases exponentially

〈x(t)〉 = x0 e
a t . (342)

The mean square value (second moment) is calculated in a similar way

〈x(t)2〉 =

∞∫
0

x2p(x, t) dx =

∞∫
0

x2p̃(y, t)
dy

dx
dx = x20

∞∫
−∞

e2yp̃(y, t)dy

=
x20√
2πb2t

∞∫
−∞

exp

(
2y − (y − [a− b2/2] t)

2

2b2t

)
dy

=
x20e

(2a+b2)t
√

2πb2t

∞∫
−∞

exp

(
−(y − [a+ 3b2/2] t)

2

2b2t

)
dy

=
x20e

(2a+b2)t
√

2πb2t

∞∫
−∞

exp

(
− z2

2b2t

)
dz = x20e

(2a+b2)t . (343)

Thus we have
〈x(t)2〉 = x20 e

2(a+b2/2) t (344)

giving the variance .

〈x(t)2〉 − 〈x(t)〉2 = x20 e
2a t
[
eb

2t − 1
]
. (345)

Typical stochastic trajectories show exponential growth in time. It agrees
with the formulas (342) and (345).

3.7 Fourier Analysis

The Fourier or spectral analysis is a powerful tool to analyze the solution of
the Langevin equation.As an example, here we apply the spectral analysis
to the time evolution of a vector v(t). In particular, v(t) can be the velo-
city of a Brownian particle moving in three–dimensional space. Its Fourier
representation as infinite sum reads

v(t) = v(t+ T ) =
∞∑

k=−∞

ak cos

(
2πkt

T

)
+

∞∑
k=−∞

bk sin

(
2πkt

T

)
. (346)
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Here ak and bk are the Fourier coefficients given by

ak =
1

T

T∫
0

v(t) cos

(
2πkt

T

)
dt (347)

bk =
1

T

T∫
0

v(t) sin

(
2πkt

T

)
dt . (348)

Using the well known Euler formulas

eix = cos(x) + i sin(x) , (349)

and

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
, (350)

the transformation (346) can be represented by complex Fourier amplitudes
ṽ(ω) as follows

v(t) = v(t+ T ) =
1

T

∑
ω

ṽ(ω)eiωt , (351)

where the summation runs over a set of discrete frequencies ω = 2πk/T with
k = 0,±1,±2, . . .. The inverse transformation reads

ṽ(ω) =

T∫
0

v(t)e−iωtdt . (352)

Eq. (351) can be viewed as an expansion in the basis of orthogonal wave
functions eiωt, which satisfy the periodic boundary conditions and has the
orthogonality property

1

T

T∫
0

eiωte−iω
′tdt = δω,ω′ . (353)

Note that the term ω = 0 in (351) represents the constant, i. e., time–
independent contribution. If in general limT→∞〈v(t)〉 is a constant, it is just
ṽ(0)/T . In this case we have

v(t)− 〈v〉 =
1

T

∑
ω 6=0

ṽ(ω)eiωt . (354)
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If the period T tends to infinity (T →∞), the discrete sum over ω 6= 0 may
be replaced by an integral. This substitution in (354) yields

v(t)− 〈v〉 =
1

2π

∞∫
−∞

ṽ(ω)eiωtdω . (355)

As a simple example, where the Fourier or spectral density S(ω) can be
easily calculated, we consider an exponentially decaying function

ϕ(t) = Ae−|t|/τ . (356)

The spectral density is

S(ω) =

∞∫
−∞

ϕ(t)e−iωtdt =

∞∫
−∞

Ae−|t|/τe−iωtdt

= A

 0∫
−∞

e(1−iωτ)t/τdt+

∞∫
0

e−(1+iωτ)t/τdt


= A

[
τ

1− iωτ
+

τ

1 + iωτ

]
=

2Aτ

1 + (ωτ)2
(357)

In the limit τ → 0 and A → ∞ at a constant Aτ , the function (356) is
proportional to the delta function. It corresponds to the white noise. Ac-
cording to (357), the Fourier spectrum of the white noise, obtained in this
limit, is independent of the frequency ω. In other words, like the white light,
it contains the whole uniform spectrum of frequencies. At a finite value of
the parameter τ , which can be interpreted as a correlation time, the Fourier
spectrum has a smooth cut-off at ω ≈ 1/τ . Such a spectrum corresponds to
colored noise.
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