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The Importance of Being Noisy – Stochasticity in Science

Why stochastic tools? When you asked alumni graduated from Euro-
pean universities moving into nonacademic jobs in society and industry what
they actually need in their business, you found that most of them did stocha-
stic things like time series analysis, data processing etc., but that had never
appeared in detail in university courses.

Aim The general aim is to provide stochastic tools for understanding of
random events in many beautiful applications of different disciplines ranging
from econophysics up to sociology which can be used multidisciplinary.

State of the art General problem under consideration is the theoretical
modeling of complex systems, i. e. many–particle systems with nondetermi-
nistic behavior. In contrast to established classical deterministic approach
based on trajectories we develop and investigate probabilistic dynamics by
stochastic tools such as stochastic differential equation, Fokker–Planck and
master equation to get probability density distribution. The stochastic ap-
paratus provides more understandable and exact background for describing
complex systems. The idea goes back to Einstein’s work on Brownian motion
in 1905 which explains diffusion process as fluctuation problem by Gaussian
law as a special case of Fokker–Planck equation.
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Textbooks

PHYSICS TEXTBOOK

R. Mahnke, J. Kaupužs, 
and I. Lubashevsky

Physics of Stochastic 
Processes

How Randomness Acts in Time

Fig. 1: R. Mahnke, J. Kaupužs and I. Lubashevsky: Physics of Stochastic
Processes, Wiley-VCH, Weinheim, 2009.

• C. W. Gardiner: Handbook of Stochastic Methods, Springer, 2004
• V. S. Anishchenko et. al: Nonlinear Dynamics of Chaotic and Stochastic
Systems, Springer, 2007
• W. Paul, J. Baschnagel: Stochastic Processes, Springer, 1999
• H. Risken: The Fokker-Planck Equation, Springer, 1984
• M. Ullah, O. Wolkenhauer: Stochastic Approaches for Systems Biology,
Springer, 2011
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1 Random Walker (Brownian Particle)

1.1 From Random Walk to Diffusion

Comparing deterministic dynamics and stochastic motion. Each dynamical
system (without randomness) has a unique solution called trajectory which
is either a regular or an irregular (chaotic) motion. On the other hand, a
stochastic process describes temporal evolution of random events by proba-
bilities (discrete case) or probability densities (continuous case). A stochastic
trajectory is a sequence of states and times measured as time series.

The stochastic motion by discrete probabilistic jumps on an (asymme-
trically) Galton board is called random walk. The random walk proceeds
by discrete steps and is described by the diffusion equation in the continu-
um limit. The concept of the random walk, also called drunkard’s walk, was
introduced into science by Karl Pearson in a letter to Nature in 1905:

A man starts from a point 0 and walks l yards in a straight line:
he then turns through any angle whatever and walks another l
yards in a straight line. He repeats this process n times. I require
the probability that after these n stretches he is at a distance
between r and r + δr from the starting point 0.

The random walk on a line is much simpler. The positions are spaced
regularly along a line. The walker has two possibilities: either one step to right
(+1) with probability p or one step to left (−1) with probability q = 1 − p.
Symmetric case (pure diffusion) means p = q = 1/2.

The probability P (m,n+ 1) that the walker is at position m after n+ 1
steps is given by the set of probabilities P (m±1, n) after n steps in accordance
with the Markov chain equation (difference equation)

P (m,n+ 1) = pP (m− 1, n) + q P (m+ 1, n) . (1)

The solution of (1) is the binomial distribution

P (m,n) =
n!

[(n+m)/2]! [(n−m)/2]!
p(n+m)/2 q(n−m)/2 . (2)

The first moment of this probability distribution is

〈m〉(n) =
n∑

m=−n

mP (m,n) = 2n

(
p− 1

2

)
(3)
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and the second moment is

〈m2〉(n) =
n∑

m=−n

m2P (m,n) = 4npq + 4n2

(
p− 1

2

)2

. (4)

Hence, the root–mean–square is given by

σ(n) =
√〈

(m− 〈m〉)2〉 =

√
〈m2〉 − 〈m〉2 =

√
4npq , (5)

and the relative width (error)

σ

〈m〉
=

√
4np(1− p)

2n(p− 1/2)
=

√
p(1− p)

(p− 1/2)2

1√
n
' n−1/2 (6)

tends to zero when n goes to infinity.

After a series of n steps of equal length the particle (called drunken sailor
as random walker) could be find at any of the following points

m = {−n,−n+ 1, . . . ,−1, 0,+1, . . . , n− 1, n} . (7)

Position m consists of k steps in one direction (success) and n−k in opposite
direction (failure)

m = k − (n− k) = 2k − n . (8)

For the k successes we get

k =
1

2
(n+m) . (9)

Starting with the well–known binomial distribution for discrete probabilities

P (m,n) ≡ B(k, n) =

(
n

k

)
pk(1− p)n−k (10)

we reduce to the symmetric case (p = 1/2)

P (m,n) =
n!

k!(n− k)!

(
1

2

)n
=

n!

[(n+m)/2]! [(n−m)/2]!

(
1

2

)n
. (11)

Further on we introduce (still discrete) coordinate xm = dm and time tn =
τ n, where d is the hopping distance (a length unit) and τ is the time step
(a time unit) and rewrite the binomial distribution (11) as P (xm, tn).
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After introducing a new control parameter

D =
d2

τ
, (12)

called diffusion coefficient, we consider the continuum limit where length unit
d and time unit τ both tend to zero in such a way that D remains constant. In
this case the physically interesting quantity is the probability density p(x, t),
i. e., the probability p(x, t)dx to find a particle within [x, x+ dx] multiplied
by the interval length dx, which equals to 2d.

Taking into account the definition (12), we finally obtain the Gaussian
distribution

p(x, t) =
1√

2πDt
exp

(
− x2

2Dt

)
. (13)

The dynamics of probability density p(x, t) (13) for a one–dimensional
random walk is given by the one–dimensional diffusion equation (partial dif-
ferential equation)

∂p(x, t)

∂t
=
D

2

∂2p(x, t)

∂x2
. (14)

To obtain certain solution, the diffusion equation (14) has to be completed
by initial and boundary conditions. We consider the initial condition p(x, t =
0) = δ(x − 0) given by the delta function (a sharp peak at x = 0), which
physically means that the random walk starts at x = 0, as well as natural
boundary conditions limx→±∞ p(x, t) = 0.

Home work related to Chapter 1 (Abgabe am 28.10.2013)

1. Calculate the zeroth, first and second moment of probability (2).

2. It is known that function (13) solves equation (14). Investigate the
general case of drift–diffusion and guess a function which solves the
following drift–diffusion equation

∂p(x, t)

∂t
= −vdrift

∂p(x, t)

∂x
+
D

2

∂2p(x, t)

∂x2
. (15)

3. Repeat the calculations of zeroth, first and second moment for proba-
bility density p(x, t) (drift–diffusion case) and discuss the solutions.

4. Derive from one–dimensional diffusion equation (14) the well–known so-
lution (13) using the following ansatz of product type p(x, t) = g(t)f(x).
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1.2 Diffusion in a Finite Interval with Mixed Bounda-
ries

Here we consider an example of the initial and boundary value diffusion
problem in a finite interval with one reflecting and one absorbing boundary.
We calculate the breakdown probability density P(t, b) which is defined as
the probability per time unit to reach the absorbing boundary.

The problem is described by the following set of equations:

1. equation of motion (dynamics)

∂p(x, t)

∂t
=
D

2

∂2p(x, t)

∂x2
, (16)

2. initial condition (delta function)

p(x, t = 0) = δ(x− x0) , (17)

3. reflecting boundary condition at x = a (left border)

∂p(x, t)

∂x

∣∣∣∣
x=a

= 0 , (18)

4. absorbing boundary condition at x = b (right border)

p(x = b, t) = 0 . (19)

For convenience we make a transformation to a new variable y = x − a.
The transformed equations read as follows:

1. equation of motion (dynamics)

∂p(y, t)

∂t
=
D

2

∂2p(y, t)

∂y2
, (20)

2. initial condition (delta function)

p(y, t = 0) = δ(y − y0) , (21)
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3. reflecting boundary condition at y = 0 (left border)

∂p(y, t)

∂y

∣∣∣∣
y=0

= 0 , (22)

4. absorbing boundary condition at y = b− a (right border)

p(y = b− a, t) = 0 . (23)

To solve the problem, first we make a separation ansatz p(y, t) = χ(t)f(y),
which yields

1

χ(t)

dχ(t)

dt
=
D

2

1

f(y)

d2f(y)

dy2
. (24)

Both sides should be equal to a constant, called −λ. Integration of the left-
hand side gives an exponential decay function

χ(t) = χ0 exp (−λt) (25)

with χ(t = 0) = χ0 = 1.

Introducing the notion of wave number k given by

k2 = λ
2

D
(26)

and integrating the right-hand side of (24) we obtain the wave equation

d2f(y)

d2y
+ k2f(y) = 0 . (27)

Its general solution is

f(y) = A sin(ky) +B cos(ky) . (28)

This solution (28) contains three unknown parameters k (or λ), A, and B.
The two (left and right) boundary conditions thus allow us to determine
particular solutions of (27) up to unknown prefactors, which further can be
uniquely determined by constructing a time-dependent solution which fulfills
the initial condition.

Following the calculations presented in textbook Physics of Stochastic
Processes, pages 195 – 197, see Fig. 1, the final solution of the probability
distribution reads

p(x, t) =
2

b− a

∞∑
m=0

e−λmt cos (km(x0 − a)) cos (km(x− a)) (29)
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inserting discrete wave numbers km and eigenvalues λm = Dk2
m/2, i. e.,

km =
π

b− a

(
1

2
+m

)
, (30)

λm =
D

2

π2

(b− a)2

(
1

2
+m

)2

(31)

with nonnegative integer numbers m = 0, 1, 2, . . . .

The first-passage time distribution (outflow or breakdown probability
density) follows from the balance condition

P(t, x = b) = − d

dt

b∫
a

p(x, t)dx . (32)

By inserting the solution (29) in the right hand side of this equation, we
obtain

P(t, b) =
2

b− a

∞∑
m=0

λme
−λmt cos (km(x0 − a))

b∫
a

cos (km(x− a)) dx

=
2

b− a

∞∑
m=0

λm
km

e−λmt cos (km(x0 − a)) sin (km (b− a))

=
πD

(b− a)2

∞∑
m=0

(−1)m
(

1

2
+m

)
e−(D/2)k2m t cos (km(x0 − a)) . (33)

The result fulfills the normalization condition

∞∫
0

P(t, b)dt = 1 . (34)

Finally we present a result well known in mathematical literature. If we
move the left boundary very far away (limiting case: a → −∞) we receive
from the infinite sum (33) the well-known formula

P(t, b) =
b− x0√
2πDt3

exp

(
−(b− x0)2

2Dt

)
=
b− x0

t
p(b− x0, t) . (35)
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2 Fokker-Planck Equation

2.1 Generalization of Drift-Diffusion Equation

The well–known general Fokker–Planck equation reads

∂p(x, t)

∂t
= − ∂

∂x
[α1(x, t) p(x, t)] +

1

2

∂2

∂x2
[α2(x, t) p(x, t)] . (36)

The first term in (36) is called the drift term and the second one – the dif-
fusion or fluctuation term. This is due to the analogy with a drift–diffusion
equation (15) where the first derivative describes the drift of the probability
profile without changing its form, whereas the second one describes the pu-
re diffusion effect. In fact, (36) is a general drift–diffusion equation for the
probability p(x, t). The diffusion or effluence of the probability distribution
profile occurs due to the stochastic fluctuations, therefore the second term
in (36) is also called the fluctuation term.

2.2 How to Solve the Fokker–Planck Equation?

Equation of motion

Study of Fokker–Planck dynamics p(x, t) with known drift f(x) and constant
diffusion given by

∂p(x, t)

∂t
= − ∂

∂x
[f(x)p(x, t)] +

σ2

2

∂2p(x, t)

∂x2
; p(x, t = 0) = δ(x− x0)

(37)
with natural boundary conditions.

Relationship between drift “force” f(x) (in m s−1) and “potential” V (x)
(in m2s−1):

V (x) = −
∫
f(x) dx ⇐⇒ f(x) = −dV (x)

dx
(38)

f(x) = −αx− βx3 ⇐⇒ V (x) =
α

2
x2 +

β

4
x4 + C (39)

Identity: Stochasticity σ =
√

2D or diffusion coefficient D = σ2/2.
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First case: The free particle solution (α = 0, β = 0) is called pure diffusi-
on.

Second case: The linear force system (α > 0, β = 0) has an analytical
solution.

Third case: The nonlinear system with cubic force (β > 0) has numerical
solution only.

Stationary solution

The stationary solution pst(x) is the long time limit of p(x, t) for t→∞ and
follows from

0 =
d

dx
[f(x)pst(x)]− σ2

2

d2pst(x)

dx2
. (40)

Rearrangement gives

0 = − d

dx

[
dV (x)

dx
pst(x) +D

dpst(x)

dx

]
. (41)

Due to natural boundary conditions we have zero flux

jst(x) ≡ −dV (x)

dx
pst(x)−Ddpst(x)

dx
= C with C = 0 . (42)

We get

dpst(x)

dx
= − 1

D

dV (x)

dx
pst(x) (43)

dpst(x)

pst(x)
= − 1

D
dV (x) (44)

as stationary solution

pst(x) = N−1 exp

[
− 1

D
V (x)

]
(45)

with normalization constant

N =

∫ +∞

−∞
dx exp

[
− 1

D
V (x)

]
. (46)
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Time dependent solution

We start with the transformation p(x, t)→ q(x, t) given by

p(x, t) = pst(x)1/2 q(x, t) ≡ N−1/2 exp

[
− 1

D

V (x)

2

]
q(x, t) . (47)

This transformation removes the first derivative in the original Fokker–Planck
equation and generates the following Schrödinger–like equation for the func-
tion q(x, t)

∂q(x, t)

∂t
= −VS(x)q(x, t) +D

∂2q(x, t)

∂x2
(48)

with the so–called Schrödinger potential

VS(x) = −

[
1

2

d2V (x)

dx2
− 1

D

(
1

2

dV (x)

dx

)2
]
. (49)

Using double–well potential

V (x) =
α

2
x2 +

β

4
x4 (50)

we get for the Schrödinger “potential” (in s−1)

VS(x) = −α
2

+

(
1

D

α2

4
− 3

2
β

)
x2 +

1

D

αβ

2
x4 +

1

D

β2

4
x6 . (51)

See Fig. 2 for double well potential.

Next step is superposition ansatz given by

q(x, t) =
∞∑
n=0

an(t)ψn(x) (52)

which can be written as

q(x, t) = pst(x)1/2 +
∞∑
n=1

an(t)ψn(x) (53)

showing a0 = 1 and ψ0(x) = pst(x)1/2.

After inserting ansatz (52) into (48) we get the eigenvalue problem with
eigenfunction ψn(x) and eigenvalue λn ≥ 0

D
d2ψn(x)

dx2
− VS(x)ψn(x) = −λnψn(x) (54)
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Fig. 2: The solid line shows the potential V (x), the dashed line shows
the Schrödinger potential VS(x). The parameters of both curves are α =
−1.0 s−1, β = 1.0 s−1m−2 and D = 1.0 m2s−1.

and the time dependent coefficients as

an(t) = an(0) exp (−λn t) . (55)

Up to now we have received

q(x, t) =
∞∑
n=0

an(0)e−λn tψn(x) (56)

where normalized orthogonal (or orthonormal) eigenfunctions ψn(x) with∫ +∞

−∞
ψn(x)ψm(x)dx = δnm (57)

from Schrödinger–like eigenvalue equation (Hermitian operator H)

Hψn(x) = λnψn(x) with H = −D d2

dx2
+ VS(x) (58)

and eigenvalue spectrum λ0 = 0 matching the eigenfunction ψ0(x) = p
1/2
st

and all other λn > 0 for n ≥ 1.
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Taking into account closure condition (completeness relation)

∞∑
n=0

ψn(x′)ψn(x) = δ(x− x′) (59)

and using the given initial condition

p(x, t = 0) = pst(x)1/2q(x, t = 0) = δ(x− x0) (60)

we get

δ(x− x0) = pst(x)1/2

∞∑
n=0

an(0)ψn(x) =
∞∑
n=0

ψn(x0)ψn(x) . (61)

This relation can be written as

pst(x)−1/2δ(x− x0) =
∞∑
m=0

am(0)ψm(x) . (62)

In the following we multiply both sides of the equation by ψn(x) and integrate
over x from −∞ to +∞. Taking into account the orthonormality condition
(57), it yields the so far unknown coefficients

an(0) = pst(x0)−1/2ψn(x0) . (63)

Finally the result reads

p(x, t) = pst(x)1/2pst(x0)−1/2

∞∑
n=0

e−λn tψn(x0)ψn(x) (64)

or

p(x, t) = pst(x) +

√
pst(x)

pst(x0)

∞∑
n=1

e−λn tψn(x0)ψn(x) . (65)

16



Summary: task and its result

The task is to solve the one–dimensional Fokker–Planck equation

∂p(x, t)

∂t
+

∂

∂x
j(x, t) = 0 (66)

with flux j(x, t) including given drift f(x) = −dV (x)/dx and constant diffu-
sion coefficient D

j(x, t) = −dV (x)

dx
p(x, t)−D∂p(x, t)

∂x
(67)

getting the probability density p(x, t) taking into account initial condition
p(x, t = 0) = δ(x−x0) and natural boundary conditions limx→±∞ j(x, t) = 0.

The result is

p(x, t) =
ψ0(x)

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)ψn(x) (68)

where the eigenfunctions ψn(x) and eigenvalues λn are determined from the
eigenvalue equation(

−D d2

dx2
+ VS(x)

)
ψn(x) = λn ψn(x) (69)

with Schrödinger potential

VS(x) = −

[
1

2

d2V (x)

dx2
− 1

D

(
1

2

dV (x)

dx

)2
]

(70)

The lowest eigenvalue is always zero (λ0 = 0) and the corresponding eigen-
function is related to the stationary solution via

pst(x) = ψ0(x)2 =
exp (−V (x)/D)∫ +∞

−∞ dx exp (−V (x)/D)
(71)
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Home work related to Chapter 2 (Abgabe am 11.11.2013)

1. Consider a constant force term in the Fokker-Planck equation (FPE).
Get the analytical solution of FPE taking into account two absorbing
boundaries at x = ±L/2.

Consider finally the limiting case L→∞ to find the well known drift–
diffusion profile.

Hint: The solution can be found in How to solve Fokker–Planck equation
treating mixed eigenvalue spectrum? by M. Brics et al., published in
Condensed Matter Physics, 2013, vol. 16, no. 1, pp.1–13

Solution:
In this case we find an unnormalized stationary solution√

p̄st(x) = exp

[
− 2

D

V (x)

2

]
= exp

[vdrift

D
x
]

(72)

which can be used here to obtain an equation of Schrödinger type with
constant Schrödinger potential

VS =
1

2D
v2

drift . (73)

The corresponding to stationary Schrödinger–type equation reads

d2ψn(x)

dx2
−
[
v2

drift

D2
− 2

D
λn

]
ψn(x) = 0 . (74)

Let us now add two absorbing boundaries located at x = ±L/2, where
ψ(x = ±L/2) = 0.

• In the case
v2drift
D2 > 2

D
λn, the solutions of Eq. (74) are

ψn(x) = Aekx +B e−kx , (75)

where

k =

√∣∣∣∣v2
drift

D2
− 2

D
λn

∣∣∣∣ , (76)

but only the trivial solution A = B = 0 satisfies boundary condi-
tions.
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• In the case
v2drift
D2 = 2

D
λn the solution of Eq. (74) is

ψn(x) = Ax+B . (77)

Also in this case, only the trivial solution A = B = 0 satisfies
boundary conditions.

• In the case of real kn =

√
2
D
λn −

v2drift
D2 > 0 Eq. (74) has non-trivial

solutions
ψn(x) = A cos(knx) +B sin(knx) , (78)

ψn,L(x) =


√

2
L

cos (kn,Lx) if n is even√
2
L

sin (kn,Lx) if n is odd
, (79)

where n = 0, 1, 2, . . . and

kn,L =
π

L
(n+ 1). (80)

Then the full solution is

q(x, t) =
∞∑
n=0

χn(0)e−λn tψn(x) . (81)

To find coefficients χn(0) we have to use initial conditions:

p(x, t = 0) = p̄st(x)1/2q(x, t = 0) = δ(x− x0) , (82)

which give

p̄st(x)−1/2δ(x− x0) =
∞∑
m=0

χm(0)ψm(x) . (83)

χn(0) = p̄st(x0)−1/2ψn(x0) . (84)
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q(x, t) =
1√

p̄st(x0)

∞∑
n=0

e−λn tψn(x0)ψn(x)

=
1√

p̄st(x0)

[
∞∑
n=0

e−λ2n tψ2n(x0)ψ2n(x) +
∞∑
n=0

e−λ2n+1 tψ2n+1(x0)ψ2n+1(x)

]

=
1√

p̄st(x0)
e
−v2drift

2D
2

L

[ ∞∑
n=0

e−
D
2
k22n t cos (k2nx0) cos (k2nx)

+
∞∑
n=0

e−
D
2
k22n+1 t sin (k2n+1x0) sin (k2n+1x)

]
.

(85)

Now it is easy to calculate the limit limL→∞ as 2
L

= 2∆k
π

= ∆κ
π

where
κn = k2n and ∆κn = 2∆k

lim
L→∞

2

L

∞∑
n=0

e−
D
2
k22n t cos (k2nx0) cos (k2nx)

= lim
∆κ→0

1

π

∞∑
n=0

e−
D
2
κ2n t cos (κnx0) cos (κnx) ∆κ

=
1

π

∫ ∞
0

dκe−
D
2
κ2 t cos (x0) cos (κx) .

(86)

This also could be usefull

cos(kx) cos(kx0) + sin(kx) sin(kx0) = cos[k(x− x0)] (87)

and ∫ ∞
0

dk e−αk
2

cos(βk) =

√
π

4α
e−

β2

4α . (88)
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2. Read the fundamental paper by Albert Einstein Über die von der mole-
kularkinetischen Theorie der Wärme geforderte Bewegung in ruhenden
Flüssigkeiten suspendierten Teilchen (in German) published in Annalen
der Physik, Band 17, 1905, S. 549 – 560.

The motion named after Robert Brown shows the stochastic displace-
ment of a particle. Brown was a botanist and he did not realize that
the motion he saw in 1827 were associated with collisions on a mole-
cular scale. It took over 75 years before Albert Einstein recognized the
connection between Brownian motion and the physical process called
diffusion.

Study Einstein’s concept of Brownian motion to derive the well–known
diffusion equation (14) by reading the orginal paper.

Solution (by A. Einstein, Ann. Physik 17(1905)549-560)

The position of a particle at the next moment depends on the present
position x(t) and a random displacement l(t)

x(t+ τ) = x(t) + l(t) . (89)

The starting position is given as x(t = 0) = x0 (= 0 for reasons of
simplity).

We need the probability distribution of the stochastic events l(t). The-
refore we assume that the continuous distribution ξ(z) of l(t) satisfies
some equations for its moments

- normalisation:
∫
ξ(z) dz = 1

- no tendency for a special direction: 〈z〉 =
∫
z ξ(z) dz = 0

- finite second moment: 〈z2〉 =
∫
z2 ξ(z) dz = d2

Now we do the step from (x′, t) to (x, t+τ). The probability of being at
position x at time t+ τ depends on the probability of being at position
x′ at time t and the probability ξ(x− x′) for doing the step from x′ to
x. After integrating over all possible positions we get

p(x, t+ τ) =

∫ ∞
−∞

p(x′, t) ξ(x− x′) dx′ . (90)
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We replace x− x′ = z, x′ = − z and receive using Taylor expansion

p(x, t+ τ) =

∫ ∞
−∞

p(x− z, t)ξ(z) dz

≈
∫ ∞
−∞

[
p(x, t)− z ∂p

∂x
+

1

2
z2 ∂

2p

∂x2

]
ξ(z) dz

= p(x, t)

∫ ∞
−∞

ξ(z) dz︸ ︷︷ ︸
1

−∂p
∂x

∫ ∞
−∞

zξ(z) dz︸ ︷︷ ︸
0

+
1

2

∂2p

∂x2

∫ ∞
−∞

z2ξ(z) dz︸ ︷︷ ︸
d2

= p(x, t) +
1

2
d2 ∂

2p

∂x2
. (91)

If we expand the left-hand side of Eq. (91) with respect to time p(x, t+
τ) = p(x, t) + τ ∂p

∂t
thus we end up with the diffusion equation

∂p(x, t)

∂t
=
d2

2τ

∂2p(x, t)

∂x2
=
D

2

∂2p(x, t)

∂x2
. (92)
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Fig. 3: The solid line shows the potential V (x), the dashed line shows the
Schrödinger potential VS(x). The parameters of both curves are α = 1.0 s−1

and D = 1.0 m2s−1.

2.3 The Textbook Example: Linear Drift in the Velo-
city Space

The problem of drift under linear force (damping in velocity space v ≡ x)
has a well known analytical solution.

Starting with the drift ansatz given by

f(x) = −αx (α > 0) , (93)

the potential (normalized to V (x = 0) = 0) reads

V (x) =
α

2
x2 , (94)

and the Schrödinger potential is also harmonic (quadratic)

VS(x) = −α
2

+
1

D

α2

4
x2 . (95)

See Fig. 3 for single well potential.

The eigenvalue equation

−Dd
2ψn(x)

dx2
+

(
−α

2
+

1

D

α2

4
x2

)
ψn(x) = λn ψn(x) (96)
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is related to the Hermite polynomial differential equation known as

d2ψn(y)

dy2
+
(
2n+ 1− y2

)
ψn(y) = 0 , (97)

with solution

ψn(y) =
1√

2nn!
√
π
e−y

2/2Hn(y) , (98)

where functions Hn(y) with n = 0, 1, 2, . . . are called Hermite polynomials.

Rewriting the 2nd order differential eigenvalue equation (96) we have to
solve

d2ψn(x)

dx2
+

1

D

(
λn +

α

2
− 1

D

α2

4
x2

)
ψn(x) = 0 . (99)

Change of variable x to a new dimensionless variable ξ via√(
1

D

)2
α2

4
x2 = ξ2 or ξ2 =

1

D

α

2
x2 (100)

gives the following second order differential equation

d2ψ(ξ)

dξ2
+

(
2

α
λ+ 1− ξ2

)
ψ(ξ) = 0 , (101)

which is related to the Hermite polynomial differential equation (97).

Therefore comparing allows us to determine the eigenvalues

2

α
λn + 1 = 2n+ 1 =⇒ λn = αn for n = 0, 1, 2, . . . . (102)

Going back from variable ξ to x we know the set of orthonormal eigen-
functions as

ψn(x) =
4

√
1

D

α

2

1√
2nn!
√
π

exp

[
−
(

1

D

α

2

)
x2

2

]
Hn

(√
1

D

α

2
x

)
, (103)

where Hn(y) are Hermite polynomials given by

Hn(y) = (−1)n ey
2 dn

dyn
e−y

2

(104)

H0(y) = 1 ; H1(y) = 2y ; H2(y) = 4y2 − 2 ; . . . (105)

Hn(y) = 2yHn−1(y)− 2(n− 1)Hn−2(y) n = 2, 3, 4, . . . . (106)
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The ground state n = 0 reflects zero eigenvalue λ0 = 0 with

ψ0(x) =
4

√
1

D

α

2

1
4
√
π

exp

[
−
(

1

D

α

2

)
x2

2

]
H0

(√
1

D

α

2
x

)
(107)

where H0

(√
1

D

α

2
x

)
= 1 . (108)

The first excited state n = 1 has eigenvalue λ1 = α with

ψ1(x) =
4

√
1

D

α

2

1√
2
√
π

exp

[
−
(

1

D

α

2

)
x2

2

]
H1

(√
1

D

α

2
x

)
(109)

where H1

(√
1

D

α

2
x

)
= 2

√
1

D

α

2
x . (110)
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Fig. 4: The picture shows the first five eigenfunctions ψ0(x) to ψ4(x). The
order n is equal to the number of nodes. The parameters are α = 1.0 s−1 and
D = 1.0 m2s−1.

Knowing all the eigenvalues λn and the complete set of eigenfunctions
ψn(x) for n = 0, 1, . . . we are able to write immediately the probability density
(in agreement with (68)) as

p(x, t) =
ψ0(x)

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)ψn(x) . (111)
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Fig. 5: The picture shows the time dependent solution p(x, t) taking into
account the first five eigenfunctions only. The four time moments are t =
0.5 s, t = 1.0 s, t = 1.5 s and t → ∞ (solid curve, stationary distribution).
The parameters are x0 = 1.0 m, α = 1.0 s−1 and D = 1.0 m2s−1.

See Fig. 4 for eigenfunctions and Fig. 5 for time evolution.

Taking into account the stationary solution (compare (71)) we get

pst(x) = ψ0(x)2 =
exp (−V (x)/D)∫ +∞

−∞ dx exp (−V (x)/D)
(112)

=

√
α

2πD
exp

[
−
( α

2D

)
x2
]
. (113)

Using the known probability density p(x, t) we want to calculate overall
quantities called moments of m-th order given by

〈x(t)m〉 =

∫ +∞

−∞
xm p(x, t) dx . (114)

The zeroth moment is normalization. In general we are able to proof it
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as follows

〈x(t)0〉 = 〈1〉 =

∫ +∞

−∞
p(x, t) dx (115)

=
1

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)

∫ +∞

−∞
ψ0(x)ψn(x) dx (116)

=

∫ +∞

−∞
ψ0(x)ψ0(x) dx =

∫ +∞

−∞
pst(x) dx = 1 . (117)

The first moment is variable x averaged over the distribution p(x, t). We
get

〈x(t)1〉 = 〈x(t)〉 =

∫ +∞

−∞
x p(x, t) dx (118)

=
1

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)

∫ +∞

−∞
xψ0(x)ψn(x) dx (119)

and calculate the first two contributions in detail.
The term n = 0 with λ0 = 0 gives zero

ψ0(x0)

ψ0(x0)

∫ +∞

−∞
xψ0(x)2 dx =

∫ +∞

−∞
x pst(x) dx = 0 (120)

due to asymmetry.
The term n = 1 with λ1 = α gives

ψ1(x0)

ψ0(x0)
e−αt

∫ +∞

−∞
xψ0(x)ψ1(x) dx = x0 e

−αt (121)

as the only nonvanishing contribution.

Hint: Use ∫ +∞

−∞
x2e−ax

2

dx =

√
π

2 a3/2
(122)

Hint: Use ∫ +∞

−∞
x
dn

dxn
e−ax

2

dx = 0 ; n = 2, 3, . . . (123)

Therefore, the time dependent first moment (mean) is calculated as

〈x(t)〉 = x0 exp (−αt)→ 0 if t→∞ . (124)
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The second moment is x2 averaged over the distribution p(x, t). We get

〈x(t)2〉 = 〈x(t)〉 =

∫ +∞

−∞
x2 p(x, t) dx (125)

=
1

ψ0(x0)

∞∑
n=0

e−λn tψn(x0)

∫ +∞

−∞
x2ψ0(x)ψn(x) dx (126)

and calculate the first three contributions in detail.
The term n = 0 with λ0 = 0 gives a finite value

ψ0(x0)

ψ0(x0)

∫ +∞

−∞
x2 ψ0(x)2 dx =

∫ +∞

−∞
x2pst(x) dx =

D

α
. (127)

The term n = 1 with λ1 = α gives zero due to asymmetry.
The term n = 2 with λ1 = 2α gives

ψ2(x0)

ψ0(x0)
e−2αt

∫ +∞

−∞
x2ψ0(x)ψ2(x) dx =

(
x2

0 −
D

α

)
e−2αt . (128)

All other terms do not contribute.

Therefore, the time dependent second moment is given as

〈x(t)2〉 = x2
0 exp (−2αt) +

D

α
(1− exp (−2αt)) . (129)

We get for the variance

〈x(t)2〉 − 〈x(t)〉2 =
D

α
(1− exp (−2αt))→ D

α
if t→∞ . (130)

Remark:
If we want to treat the limit case called pure diffusion, we have to consider
the situation that the control parameter α tends to zero (α → 0). For the
moments we get easily 〈x(t)〉 = x0 and 〈x(t)2〉 → ∞.

But how to get the known probability density for the case α = 0

p(x, t) =
1√

4πDt
exp

[
−(x− x0)2

4Dt

]
(131)

from the calculated density p(x, t) given by (111) with eigenvalues λn = αn
and eigenfunctions ψn(x) (103) including Hermite polynomials Hn(x)? The
values Hn(0) are called Hermite numbers.
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Remark: Sommerfeldsche Polynommethode
First published by A. Sommerfeld and H. Welker in Annalen der Physik 32
(1938) 56–65

Some more details who to solve the differential equation (101) named
after Hermite

d2ψ(ξ)

dξ2
+

(
2

α
λ+ 1− ξ2

)
ψ(ξ) = 0 (132)

by power series expansion. We start with the ansatz

ψ(ξ) = h(ξ)e−ξ
2/2 with ψ(ξ → ±∞)→ 0 (133)

and after inserting we get the following differential equation

d2h(ξ)

dξ2
− 2ξ

dh(ξ)

dξ
+

2

α
λh(ξ) = 0 . (134)

Here we try a power series for the unknown function

h(ξ) =
∞∑
i=0

aiξ
i (135)

using

dh(ξ)

dξ
=
∞∑
i=1

aiiξ
i−1 =

∞∑
j=0

aj+1(j + 1)ξj (136)

d2h(ξ)

dξ2
=
∞∑
i=2

aii(i− 1)ξi−2 =
∞∑
j=0

aj+2(j + 2)(j + 1)ξj . (137)

After inserting we get

∞∑
j=0

aj+2(j + 2)(j + 1)ξj − 2
∞∑
j=0

aj+1(j + 1)ξj+1 +
2

α
λ
∞∑
j=0

ajξ
j = 0 (138)

or
∞∑
i=0

ξi
{
ai+2(i+ 2)(i+ 1)− 2aii+

2

α
λai

}
= 0 . (139)

To fulfill this equation we arrive at the mapping

ai+2 =
2i− (2/α)λ

(i+ 2)(i+ 1)
ai (140)
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which is a iteration of the following type:
If you know a0, a2 follows, a4 follows, etc,
If you know a1, a3 follows, a5 follows, etc.

Due to natural boundary conditions the power series has to be finite

hn(ξ) =
n∑
i=0

a
(n)
i ξi (141)

and the iteration will be truncated at a
(n)
n by a

(n)
n+2 = 0. From

0 =
2n− (2/α)λ

(n+ 2)(n+ 1)
a(n)
n (142)

we find the condition for the eigenvalue λ with its spectrum

2n− 2

α
λ = 0 =⇒ λn = αn . (143)

Now we will explore the ground state n = 0 in detail. Since the ground
state eigenvalue is zero λ0 = 0, the solution p(x, t) refers to the stationary
situation pst(x) = p(x, t→∞) (113).

From h0(ξ) =
∑n=0

i=0 a
(n)
i ξi = a

(0)
0 ξ0 = a

(0)
0 we get ψ0(ξ) = h0(ξ)e−ξ

2/2 =

a
(0)
0 e−ξ

2/2. Doing inverse transformation from ξ to x we have so far

ψ0(x) = a0 exp

[
−
(

1

D

α

2

)
x2

2

]
. (144)

The unknown coefficient a
(0)
0 can be calculated from orthonormality condition∫ ∞

−∞
ψ0(x)ψ0(x) dx = 1 =⇒ a

(0)
0 =

4

√
1

π

1

D

α

2
. (145)

It gives the normalized ground state eigenfunction (see (107))

ψ0(x) =
4

√
1

π

1

D

α

2
exp

[
−
(

1

D

α

2

)
x2

2

]
. (146)

Now we will explore the first excited state n = 1 with eigenvalue λ1 = α
in more detail.
From h1(ξ) =

∑n=1
i=0 a

(n)
i ξi = a

(1)
0 ξ0 + a

(1)
1 ξ1 = a

(1)
0 + a

(1)
1 ξ we get ψ1(ξ) =

h1(ξ)e−ξ
2/2 = a

(1)
0 e−ξ

2/2 + a
(1)
1 ξ e−ξ

2/2.
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The unknown coefficients a
(1)
0 and a

(1)
1 should be determined from the ortho-

normalization condition. From∫ ∞
−∞

ψ0(x)ψ1(x) dx = 0 (147)

we find out via∫ ∞
−∞

(
1

D

α

2

)−1/2

dξ
{
a

(0)
0 e−ξ

2/2
}{

a
(1)
0 e−ξ

2/2 + a
(1)
1 ξe−ξ

2/2
}

= 0 (148)

the result a
(1)
0 = 0.

From ∫ ∞
−∞

ψ1(x)ψ1(x) dx = 1 (149)

we find out via

a
(1)
1

2
∫ ∞
−∞

(
1

D

α

2

)−1/2

dξ
{
ξe−ξ

2/2
}2

= 0 (150)

the result a
(1)
1 = 4

√
1
D
α
2

1
π

√
2 .

The eigenfunction of first order reads

ψ1(x) =
4

√
1

D

α

2

1

π

√
1

D

α

2

1√
2

2x exp

[
− 1

D

α

2

x2

2

]
. (151)

Now we will start to explore the second excited state n = 2 with eigen-
value λ2 = 2α to some extend.
From h2(ξ) =

∑n=2
i=0 a

(n)
i ξi = a

(2)
0 ξ0 + a

(2)
1 ξ1 + a

(2)
2 ξ2 we get

ψ2(ξ) = h2(ξ)e−ξ
2/2 = a

(2)
0 e−ξ

2/2 + a
(2)
1 ξ e−ξ

2/2 + a
(2)
2 ξ2e−ξ

2/2.

The coefficient a
(2)
2 is given by a

(2)
0 via recurrence formula

a
(2)
2 =

−2/α · 2α
2 · 1

a
(2)
0 = −2a

(2)
0 . (152)

So far we have

ψ2(ξ) = a
(2)
0 e−ξ

2/2 + a
(2)
1 ξe−ξ

2/2 − 2a
(2)
0 ξ2e−ξ

2/2

= a
(2)
0

(
1− 2ξ2

)
e−ξ

2/2 + a
(2)
1 ξe−ξ

2/2 (153)
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and together with known eigenfunctions

ψ1(ξ) = a
(1)
1 ξ e−ξ

2/2 (154)

ψ0(ξ) = a
(0)
0 e−ξ

2/2 (155)

we get ∫ ∞
−∞

ψ2(x)ψ1(x) dx = 0 =⇒ a
(2)
1 = 0 (156)

and since ∫ ∞
−∞

ψ2(x)ψ2(x) dx = 1 =⇒ a
(2)
0 = . . . 6= 0 (157)

finally
ψ2(ξ) = a

(2)
0

(
1− 2ξ2

)
e−ξ

2/2 . (158)

32



2.4 Ornstein–Uhlenbeck Process

We consider the Ornstein–Uhlenbeck process in the space of coordinate x
and velocity v and investigate the probability distribution function p(x, v, t)
which obeys the following Fokker–Planck equation

∂

∂ t
p = − ∂

∂ x
[v p] +

∂

∂ v
[γ v p] +

∂2

∂ v2
[B p] . (159)

We set
p(x, v, t = 0) = δ(x− x0) δ(v − v0) (160)

as the initial condition, which means that the process starts at certain posi-
tion x = x0 with given velocity v0.

Our aim is to solve the above Fokker–Planck equation (159) in agreement
with (160) to get the probability density p = p(x, v, t) analytically.

In order to obtain the one–dimensional probability density distribution
in the space of velocities v, we use the following relation

pv(v, t) =

∫
dx p(x, v, t) . (161)

It leads to the complete solution in v which reads

pv(v, t) =
1√

2 π σ2
v(t)

exp

[
−1

2

(v − v0 exp [−γ t])2

σ2
v(t)

]
, (162)

σ2
v(t) =

B

γ
(1− exp [−2 γ t]) .

The probability density distribution for velocity v at different time mo-
ments t shows the relaxation to the stationary (equilibrium) one.

Considering the long–time limit t → ∞ in Eq. (162), we obtain the well
known Maxwell distribution

pv(v) =

√
m

2 π kB T
exp

[
−1

2

mv2

kB T

]
(163)

B

γ
=
kB T

m
(164)

with temperature T , mass of particles m, and the Boltzmann constant kB.
The diffusion coefficient in the velocity space B characterizes the fluctuation
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strength, whereas γ is the friction coefficient, which is related to the energy
dissipation. As we see, the ratio of these two quantities is proportional to the
temperature, respectively, thermal energy kBT . Therefore, this relation (164),
which has already appeared in a paper by Albert Einstein and is known
as Einstein’s formula representing some form of the fluctuation–dissipation
theorem.

The probability distribution over coordinate x is given as

px(x, t) =
1√

2 π σ2
x(t)

exp

[
−1

2

(x− µx(t))2

σ2
x(t)

]
, (165)

µx(t) = x0 +
v0

γ
(1− exp [−γ t]) ,

σ2
x(t) =

2B

γ2
t− 3

B

γ3
+ 4

B

γ3
exp [−γ t]− B

γ3
exp [−2 γ t] .

The probability density distribution px(x, t) over coordinate x at different
time moments shows the broadening with increasing time.

Considering the variance in more detail, we find the following relation

σ2
v ∼

2B

γ2
t = 2D t . (166)

for long times t→∞. This linear growth of the variance has been discovered
already by Albert Einstein.

Finally the probability density distribution p(x, v, t) we wanted to calcu-
late reads

p(x, v, t) =
1√

2 π 2σ2
v

exp

[
−1

2

(v − µv)2

2σ2
v

]
1√

2π 2 σ̄2
x

exp

[
−1

2

(x− µ̄x)2

2 σ̄2
x

]
.

(167)
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with

p(x, v, t) =
1√

2π2σ2
v

exp

[
−1

2

(v − µv)2

2σ2
v

]
1√

2π2σ̄2
x

exp

[
−1

2

(x− µ̄x)2

2σ̄2
x

]
µ̄x = µx +

(v − µv)σ2
xv

2σ2
v

σ̄2
x = σ2

x −
σ4
xv

4σ2
v

µx = x0 +
v0

γ
[1− exp(−γt)]

µv = v0 exp(−γt)

σ2
x =

B

2γ3
[1− exp(−2γt)] +

B

γ2
t− 2

B

γ3
[1− exp(−γt)]

σ2
v =

B

2γ
[1− exp(−2γt)]

σ2
xv = −B

γ2
[1− exp(−2γt)] + 2

B

γ2
[1− exp(−γt)]

The probability density p(x, v, t) is given in units of s/m2. We thus ha-
ve calculated the probability distribution from which we can determine the
probability to find a particle within any small coordinate interval [x, x+ dx]
and velocity interval [v, v+dv] at a time moment t. The obtained probability
density distribution is presented in Fig. 6. The broadening over the coordi-
nate axis with increasing of time, as well as the stationary profile over the
velocity axis can be well recognized. Furthermore, it is easy to see that a
simple multiplication of one–dimensional distributions for the coordinate x
and velocity v does not reproduce the mutual dependence.

35



-2 -1 0 1 2
-2

-1

0

1

2
 

 t = 0.5 s

x

v

0
0,38
0,75
1,1
1,5
1,9
2,3
2,6
3,0

p(x,v,t)

-2 -1 0 1 2
-2

-1

0

1

2

 

 t = 1 s

x

v

0
0,11
0,23
0,34
0,45
0,56
0,68
0,79
0,90

p(x,v,t)

-2 -1 0 1 2
-2

-1

0

1

2

 

 t = 5 s

x

v

0
0,02
0,03
0,05
0,07
0,09
0,11
0,12
0,14

p(x,v,t)

-2 -1 0 1 2
-2

-1

0

1

2

 

 t = 50 s

x

v

0
4,4E-3
8,7E-3
1,3E-2
1,7E-2
2,2E-2
2,6E-2
3,1E-2
3,5E-2

p(x,v,t)

Fig. 6: The probability density distribution p(x, v, t) given by Eq. (167) at
four different time moments t = 0.5 s (top left), t = 1 s (top right), t = 5 s
(bottom left), and t = 50 s (bottom right). The values of parameters are
B = 0.5 m2/ s3 and γ = 1 s−1. The initial conditions are x0 = 0 m and
v0 = 1 m/s.
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3 Master Equation

3.1 Markovian Stochastic Processes

Stochastic processes enter into many physical descriptions of nature. Histori-
cally first the motion of a heavy particle in a fluid of light molecules has been
observed. The path of such Brownian particle consists of stochastic displa-
cements due to random collisions. Such motion was studied by the Scottish
botanist Robert Brown (1773 – 1858). In 1828 he discovered that the micros-
copically small particles into which the pollen of plants decay in an aqueous
solution are in permanent irregular motion. Such a stochastic process is cal-
led Brownian motion and can be interpreted as discrete random walk or
continuous diffusion movement.

The intuitive background to describe the irregular motion completely as
stochastic process is to measure values x1, x2, . . . , xn, . . . at time moments
t1, t2, . . . , tn, . . . of a time dependent random variable x(t) and assume that
a set of joint probability densities, called JPD–distributions

pn(x1, t1;x2, t2; . . . ;xn, tn) , n = 1, 2, . . . (168)

exists. The same can be done by introducing the set of conditional probability
densities (called CPD–distributions)

pn(xn, tn | xn−1, tn−1; . . . ;x1, t1) , n = 2, 3, . . . (169)

denoting that at time tn the value xn can be found, if at previous times
tn−1, . . . , t1 the respective values xn+1, . . . x1 were present. The relationship
between JPD and CPD is given by

pn+1(x1, t1; . . . ;xn+1, tn+1)

= pn+1(xn+1, tn+1 | xn, tn; . . . ;x1, t1) pn(x1, t1; . . . ;xn, tn) . (170)

This stochastic description in terms of macroscopic variables will be cal-
led mesoscopic. Why? Typical systems encountered in the everyday life like
gases, liquids, solids, biological organisms, human or technical objects con-
sist of about 1023 interacting units. The macroscopic properties of matter are
usually the result of collective behavior of a large number of atoms and mo-
lecules acting under the laws of quantum mechanics. To understand and con-
trol these collective macroscopic phenomena the complete knowledge based
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upon the known fundamental laws of microscopic physics is useless because
the problem of interacting particles is much beyond the capabilities of the
largest recent and future computers. The understanding of complex macros-
copic systems consisting of many basic particles (in the order of atomic sizes:
10−10 m) requires the formulation of new concepts. One of the methods is the
stochastic description taking into account the statistical behavior. Since the
macroscopic features are averages over time of a large number of microscopic
interactions, the stochastic description links both approaches together, the
microscopic and the macroscopic one, to give probabilistic results.

Speaking about a stochastic process from the physical point of view we
always refer to stochastic variables (random events) changing in time. A
realization of a stochastic process is a trajectory x(t) as function of time.
Here we introduce a hierarchy of probability distributions

pn(x1, t1;x2, t2; . . . ;xn, tn) dx1dx2 . . . dxn , n = 1, 2, . . . , (171)

where p1(x1, t1)dx1 is known as time dependent probability of first order to
measure the value x1 (precisely, the value within [x1, x1 + dx1]) at time t1,
p2(x1, t1;x2, t2) is the same probability of second order, up to higher–order
joint distributions pn(x1, t1; . . . ;xn, tn)dx1dx2 . . . dxn to find for the stochastic
variable the value x1 at time moment t1, the value x2 at time t2 and so on.
Only the knowledge of such infinite hierarchy of joint probability densities
pn(x1, t1; . . . ;xn, tn) (expression (168)) with n = 1, 2, . . . gives us the overall
description of the stochastic process.

A stochastic process without any dynamics (like a coin throw or any
hazard game) is called a temporally uncorrelated process. It holds that

p2(x1, t1;x2, t2) = p1(x1, t1) p1(x2, t2) , (172)

if random variables at different times are mutually independent. It means
that each realization of a random number at time t2 does not depend on
previous time t1, i. e., the correlation at different times t1 6= t2 is zero.
Such a stochastic process, where function p1(x1, t1) ≡ p1(x) is the density of
a normal distribution, is called Gaussian white noise. The Gaussian white
noise with its rapidly varying, highly irregular trajectory is an idealization of
a realistic fluctuating quantity. Due to factorization of all higher–order joint
probability densities the knowledge of the normalized distribution p1(x1, t1)
describes the process totally.

Now we are introducing dynamics via correlations between two different
time moments. This basic assumption enables us to define the Markov pro-
cess, also called Markovian process, by two quantities totally, namely the
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first–order p1(x1, t1) and the second–order probability density p2(x1, t1;x2, t2),
or equivalently by the joint probability p1(x1, t1) and the conditional proba-
bility p2(x2, t2 | x1, t1) to find the value x2 at time t2, given that its value at
previous time t1 (t1 < t2) is x1. In contradiction to uncorrelated processes
(172) discussed before, Markov processes are characterized by the following
temporal relationship

p2(x1, t1;x2, t2) = p2(x2, t2|x1, t1) p1(x1, t1) . (173)

The Markov property

pn(xn, tn | xn−1, tn−1; . . . ;x1, t1) = p2(xn, tn | xn−1, tn−1) (174)

enables us to calculate all higher–order joint probabilities pn for n > 2. To
determine the fundamental equation of stochastic processes of Markov type
we start with the third–order distribution (t1 < t2 < t3)

p3(x1, t1;x2, t2;x3, t3) = p3(x3, t3 | x2, t2;x1, t1) p2(x1, t1;x2, t2)

= p2(x3, t3 | x2, t2) p2(x2, t2 | x1, t1) p1(x1, t1) (175)

and integrate this identity over x2 and divide both sides by p1(x1, t1). We
get the following result for the conditional probabilities defining a Markov
process

p2(x3, t3 | x1, t1) =

∫
p2(x3, t3 | x2, t2) p2(x2, t2 | x1, t1) dx2 , (176)

called Chapman–Kolmogorov equation.

3.2 Derivation of Master Equation

As already stated the Markov process is uniquely determined through the
distribution p1(x, t) at time t and the conditional probability p2(x′, t′ | x, t),
also called transition probability from x at t to x′ at later t′, to determine the
whole hierarchy pn (n ≥ 3) by the Markov property (174). Also these two
functions cannot be chosen arbitrarily, they have to fulfill two consistency
conditions, namely the Chapman–Kolmogorov equation (176)

p2(x′′, t′′ | x, t) =

∫
p2(x′′, t′′ | x′, t′) p2(x′, t′ | x, t) dx′ , (177)

the Markov relationship (173)

p1(x′, t′) =

∫
p2(x′, t′|x, t) p1(x, t) dx , (178)
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and the normalization condition∫
p1(x′, t′) dx′ = 1 . (179)

The history in a Markov process, given by (174), is very short, only one
time interval from t to t′ plays any role. If the trajectory has reached x at
time t, the past is forgotten, and it moves toward x′ at t′ with a probability
depending on x, t and x′, t′ only. The entire information relevant for the future
is thus contained in the present. A Markov process is a stochastic process
for which the future depends on the past and the present only through the
present. It has no memory. In an ordinary case where the space of states x is
locally homogeneous this gives sense to transform the Chapman–Kolmogorov
equation (176) in an equivalent differential equation in the short time limit
t′ = t + τ with small τ tending to zero. The short time behavior of the
transition probability p2(· | ·) should be written as series expansion with
respect to time interval τ in the form

p2(x, t+ τ | x′′, t) = [1− w̄(x, t)τ ] δ(x− x′′) + τw(x, x′′, t) +O(τ 2) . (180)

The new quantity w(x, x′′, t) ≥ 0 is the transition rate, the probability per
time unit, for a jump from x′′ to x 6= x′′ at time t. This transition rate w
multiplied by the time step τ gives the second term in the series expansion
describing transitions from another state x′′ to x. The first term (with the
delta function) is the probability that no transitions takes place during time
interval τ . Based on the normalization condition∫

p2(x, t+ τ | x′′, t) dx = 1 (181)

it follows that

w̄(x, t) =

∫
w(x′′, x, t) dx′′ . (182)

The ansatz (180) implies that a realization of the random variable after any
time interval τ retains the same value with a certain probability or attains a
different value with the complementary probability. A typical trajectory x(t)
consists of straight lines x(t) = const interrupted by jumps. 1994).
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From Chapman–Kolmogorov equation (176) together with (180) we get

p2(x, t+ τ | x′, t′) =

∫
p2(x, t+ τ | x′′, t)p2(x′′, t | x′, t′) dx′′

=

∫
[1− w̄(x, t)τ ] δ(x− x′′)p2(x′′, t | x′, t′) dx′′

+

∫
τw(x, x′′, t)p2(x′′, t | x′, t′) dx′′ +O(τ 2) . (183)

With (182) and after taking the short time limit τ → 0 one obtains the
following differential equation

∂

∂t
p2(x, t | x′, t′) =

∫
w(x, x′′, t)p2(x′′, t | x′, t′) dx′′

−
∫
w(x′′, x, t)p2(x, t | x′, t′) dx′′ . (184)

In order to rewrite the derived equation in a form well known in physical
concepts we get after multiplication by p1(x′, t′) and integration over x′ the
differential formulation of the Chapman–Kolmogorov equation

∂

∂t
p1(x, t) =

∫
w(x, x′, t)p1(x′, t) dx′ −

∫
w(x′, x, t)p1(x, t) dx′ (185)

called master equation in the (physical) literature.

The name ’master equation’ for the above probability balance equation
is used in a sense that this differential expression is a general, fundamental
or basic equation. For a homogeneous in time process the transition rates
w(x, x′, t) are independent of time t and therefore w(x, x′, t) = w(x, x′). The
short time transition rates w have to be known from the physical context,
often like an intuitive ansatz, or have to be formulated based on a reasona-
ble hypothesis or approximation. With known transition rates w and given
initial distribution p1(x, t = 0) the master equation (185) gives the resulting
evolution of the probability p1 over an infinitely long time period.
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3.3 Master Equation and its Solution

The basic equation of stochastic Markov processes called master equation is
usually written as gain–loss equation (185) for the probabilities p(x, t) in the
form

∂p(x, t)

∂t
=

∫
{w(x, x′)p(x′, t)− w(x′, x)p(x, t)} dx′ . (186)

This very general equation can be interpreted as local balance for the proba-
bility densities which have to fulfill the global normalization condition∫

p(x, t) dx = 1 (187)

at each time moment t, also at the beginning for the initial distribution
p(x, t = 0). The linear master equation (186) with known transition rates
per unit time w(x, x′) is a so–called Markov evolution equation showing the
relaxation from a chosen starting distribution p(x, t = 0) to some final pro-
bability distribution p(x, t → ∞). The linearity of the master equation is
based on the assumption that the underlying dynamics is Markovian. The
transition probabilities w do not depend on the history of reaching a state,
so that the transition rates per unit time are indeed constants for a given
temperature or total energy.

If the state space of the stochastic variable is a discrete one, often consi-
dering natural numbers within a finite range 0 ≤ n ≤ N , the master equation
for the time evolution of the probabilities p(n, t) is written as

dp(n, t)

dt
=
∑
n′ 6=n

{w(n, n′)p(n′, t)− w(n′, n)p(n, t)} , (188)

where w(n′, n) ≥ 0 are rate constants for transitions from n to other n′ 6= n.
Together with the initial probabilities p(n, t = 0) (n = 0, 1, 2, . . . , N) and
the boundary conditions at n = 0 and n = N this set of equations governing
the time evolution of p(n, t) from the beginning at t = 0 to the long–time
limit t → ∞ has to be solved. The meaning of both terms is clear. The
first (positive) term is the inflow current to state n due to transitions from
other states n′, and the second (negative) term is the outflow current due to
opposite transitions from n to n′.

Now let us define stationarity, sometimes called steady state, as a time
independent distribution pst(n) by the condition dp(n, t)/dt|p=pst = 0. The-
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refore the stationary master equation is given by

0 =
∑
n′ 6=n

{
w(n, n′)pst(n′)− w(n′, n)pst(n)

}
. (189)

This equation states the obvious fact, that in the stationary or steady state
regime the sum of all transitions into any state n must be balanced by the
sum of all transitions from n into other states n′. Based on the properties of
the transition rates per unit time the probabilities p(n, t) tend in the long–
time limit to the uniquely defined stationary distribution pst(n), for which
in open systems a constant probability flow is possible. This fundamental
property of the master equation may be stated as

lim
t→∞

p(n, t) = pst(n) . (190)

Now we are discussing the question of in a system without external ex-
change. The condition of equilibrium in closed isolated systems is much stron-
ger than the former condition of stationarity (189). Here we demand as an
additional constraint a balance between each pair of states n and n′ sepa-
rately. This so–called detailed balance relation is written for the equilibrium
distribution peq(n) as

0 = w(n, n′)peq(n′)− w(n′, n)peq(n) . (191)

It always holds for one–step processes in one–dimensional systems with closed
boundaries further considered in our paper. Of course, each equilibrium state
is by definition also stationary. If the initial probability vector p(n, t = 0) is
strongly nonequilibrium, many probabilities p(n, t) change rapidly as soon as
the evolution starts (short–time regime), and then relax more slowly towards
equilibrium (long–time behavior). The final state called thermodynamic equi-
librium is reached in the limit t→∞.

Using linear algebra we want to solve the master equation analytically by
an expansion in eigenfunctions. This method gives us a general solution of
the time dependent probability vector p(n, t) expressed by eigenvectors and
eigenvalues. In a first step we introduce the master equation, written as a set
of coupled linear differential equations (188), in a compact matrix form

dP(t)

dt
= W P(t) , (192)

with a probability vector P(t) = {p(n, t) | n = 0, . . . , N} and an undecom-
posable asymmetric transition matrix W = {W (n, n′) | n, n′ = 0, . . . , N}.
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The elements of the matrix are given by

W (n, n′) = w(n, n′)− δn,n′
∑
m6=n

w(m,n) (193)

and obey the following two properties

W (n, n′) ≥ 0 for n 6= n′ , (194)∑
n

W (n, n′) = 0 for each n′ . (195)

Known from matrix theorythere are a number of consequences based on both
properties. Especially the transition matrix W has a single zero eigenva-
lue whose eigenvector is the equilibrium probability distribution. In general,
other eigenvalues can be complex and they always have negative real part.
In our special case where the detailed balance (191) holds all eigenvalues are
real, as discussed further on.

The solution P(t) of the master equation (192) with given initial vector
P(0) may be written formally as

P(t) = P(0) exp(W t) , (196)

(where exp(W t) =
∑∞

m=0(W t)m/m!) but this does not help us to find P(t)
explicitly.

The familiar method is to make W symmetric and thereby diagonalizable
and then to construct the solution as superposition of eigenvectors uλ related
to (zero or negative) eigenvalues λ in the form

P(t) =
∑
λ

cλuλ eλ t . (197)

with up to now unknown coefficients cλ. Using the condition of detailed
balance (191) we transform the matrix W = {W (n, n′)} to a new symmetric

transition matrix W̃ = {W̃ (n, n′)} with elements given by

W̃ (n, n′)
def
= W (n, n′)

√
peq(n′)

peq(n)
= W̃ (n′, n) . (198)

Both matrices W and W̃ have the same eigenvalues λi. Due to the sym-
metry of matrix W̃, all eigenvalues are real. They may be labeled in order
of decreasing algebraic values, so that λ0 = 0 and λi < 0 for 1 ≤ i ≤ N .
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Denoting the normalized eigenvectors by ui and ũi respectively, defined by
the eigenvalue equations∑

n′

W (n, n′)ui(n
′) = λi ui(n) ; W ui = λi ui (199)∑

n′

W̃ (n, n′) ũi(n
′) = λi ũi(n) ; W̃ ũi = λi ũi (200)

and related by the transformation ui(n) =
√
peq(n) ũi(n) to each other, we

are ready to construct the time dependent solution of the fundamental master
equation (192). According to superposition formula (197), where coefficients
cλ are calculated from the initial condition p(n, 0) at t = 0, the solution is
then

p(n, t) =
√
peq(n)

N∑
i=0

ũi(n) eλit

[
N∑
m=0

ũi(m)
p(m, 0)√
peq(m)

]
, (201)

or

p(n, t) =
N∑
i=0

ui(n) eλit

[
N∑
m=0

ui(m)
p(m, 0)

peq(m)

]
. (202)

This solution plays a very important role in the stochastic description of
Markov processes and can be found in different notations (e. g. as integral
representation) in many textbooks.

As time increases to infinity (t→∞) only the term i = 0 in the solution
survives and the probabilities tend to equilibrium P(t)→ Peq, written as

p(n, t) = peq(n) +
N∑
i=1

ui(n) eλit

[
N∑
m=0

ui(m)
p(m, 0)

peq(m)

]
. (203)

In the long–time limit all remaining modes cλuλ eλ t decay exponentially.
In the short–time regime due to combinations of modes with different signs
there is the possibility of growing and subsequent shrinking of transient states
as probability current from initial distribution P(0) to equilibrium Peq via
intermediates P(t).

Master equation dynamics can be studied either by solving the basic equa-
tion analytically with implementation of numerical methods or by simulating
the stochastic process as a large number of subsequent jumps from state to
state with the given transition rates. Both methods have different advanta-
ges and disadvantages. One important point is the choice of the appropriate
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time interval called numerical integration step or waiting time in simulati-
on technique. The step size required for a given accuracy is usually smaller
when time t is closer to zero, and can be enlarged as t grows. Therefore only
a numerical algorithm with an adaptive step size should be used.

3.4 One-step Master Equation for Finite Systems

We are speaking about a one–dimensional stochastic process if the state space
is characterized by one variable only. Often this discrete variable is a particle
number n ≥ 0 describing the amount of molecules in a box or the size of an
aggregate. In chemical physics such aggregation phenomena like formation
and/or decay of clusters are of great interest. To determine the relaxation
dynamics of clusters of size n we take a particularly simple Markov process
with transitions between neighboring states n and n′ = n± 1. This situation
is called a one–step process. In biophysics, if the variable n represents the
number of living individuals of a particular species, the one–step process is
often called birth–and–death process to investigate problems in population
dynamics. The detailed balance relation (191) can be proven for the one–
step process, so that in our case the aforesaid (see Section 3.3) is completely
correct.

Setting the transition rates w(n, n − 1) = w+(n − 1), w(n, n + 1) =
w−(n+1), and therefore also w(n+1, n) = w+(n), w(n−1, n) = w−(n), now
the forward master equation (188) reads

dp(n, t)

dt
= w+(n− 1) p(n− 1, t) + w−(n+ 1) p(n+ 1, t)

− [w+(n) + w−(n)] p(n, t) . (204)

In general the forward and backward transition rates w+(n), w−(n) are
nonlinear functions of the random variable n; the physical dimension of w±
is one over time (s−1). The master equation is always linear in the unknown
probabilities p(n, t) to be at state n at time t. It has to be completed by the
boundary conditions. The nonlinearity refers only to the transition coeffi-
cients. Further on we will pay attention to particles as aggregates in a closed
box or vehicular jams on a circular road. Therefore in finite systems the range
of the discrete variable n is bounded between 0 and N (n = 0, 1, 2, . . . , N).

The general one–step master equation (204) is valid for n = 1, 2, . . . , N−1,
but meaningless at the boundaries n = 0 and n = N . Therefore we have to
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add two boundary equations as closure conditions

dp(0, t)

dt
= w−(1) p(1, t)− w+(0) p(0, t) , (205)

dp(N, t)

dt
= w+(N − 1) p(N − 1, t)− w−(N) p(N, t) . (206)

To solve the set of equations we rewrite (204) as balance equation

dp(n, t)

dt
= J(n+ 1, t)− J(n, t) (207)

with probability current defined by

J(n, t) = w−(n) p(n, t)− w+(n− 1) p(n− 1, t) . (208)

In the stationary regime, remember (189), all flows (208) have to be in-
dependent of n and therefore equal to a constant current of probability:
J(n + 1) = J(n) = J . In open systems the stationary solution is no longer
unique, it depends on the current J .

In finite systems with n = 0, 1, 2, . . . , N one finds a situation with zero
flux J = 0, which corresponds to steady state with a detailed balance rela-
tionship similar to (191). Therefore the stationary distribution pst(n) fulfills
the recurrence relation

pst(n) =
w+(n− 1)

w−(n)
pst(n− 1) . (209)

By applying the iteration successively we get the relation

pst(n) = pst(0)
n∏

m=1

w+(m− 1)

w−(m)
, (210)

which determines all probabilities pst(n) (n = 1, 2, . . . , N) in terms of the
first unknown one pst(0). Taking into account the normalization condition

N∑
n=0

pst(n) = 1 or pst(0) +
N∑
n=1

pst(n) = 1 (211)

the stationary probability distribution pst(n) in finite systems is finally writ-
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ten as

pst(n) =



n∏
m=1

w+(m− 1)

w−(m)

1 +
N∑
k=1

k∏
m=1

w+(m− 1)

w−(m)

n = 1, 2, . . . , N

1

1 +
N∑
k=1

k∏
m=1

w+(m− 1)

w−(m)

n = 0 .

(212)

It is often convenient to write the stationary solution (210) in the exponential
form

pst(n) = pst(0) exp {−Φ(n)} , (213)

where, in analogy to physical systems, the function

Φ(n) =
n∑

m=1

ln

(
w−(m)

w+(m− 1)

)
(214)

is called the potential.

The obtained result (212) based on the zero–flux relationship (209) is a
unique solution for the stationary probability distribution in finite systems
with closed boundaries. For an isolated system the stationary solution of
the master equation pst is identical with the thermodynamic equilibrium peq,
where the detailed balance holds, which for one–step processes reads

w−(n) peq(n) = w+(n− 1) peq(n− 1) . (215)

The condition of detailed balance states a physical principle. If the distri-
bution peq is known from equilibrium statistical mechanics and if one of the
transition rates is also known (e. g. w+ by a reasonable ansatz), the equation
(215) provides the opportunity to formulate the opposite transition rate w−
in a consistent way. By this procedure the nonequilibrium behavior is ade-
quately described by a sequence of (quasi–)equilibrium states. The relaxation
from any initial nonequilibrium distribution tends always to the known fi-
nal equilibrium. In physical systems the equilibrium distribution usually is
represented in an exponential form

P eq(n) ∝ exp [−Ω(n)/(kBT )] (216)

where Ω(n) is the thermodynamic potential depending on the stochastic va-
riable n, kB is the Boltzmann constant, and T is the temperature. Eq. (216)
is comparable with (213) where Φ(n) = Ω(n)/(kBT ).
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3.5 Stochastic Decay in Finite Systems

Up to now we have considered Markov processes in a more general framework
without defining the states of the system as well as the rates for the tran-
sitions between these states precisely. The particular case, where the states
are characterized by a single particle number n and the rates by a one–step
backward transition w−(n) only, is called decay process.

In a first step we present an example of traffic flow considered as Markov
process. We want to investigate the dissolution of a queue of cars standing
in front of traffic lights. When the lights switch to green, the first car starts
to move. After a certain time interval (waiting time τ = const > 0) the next
vehicle accelerates to pass the stop line and so on. In our model we consider
the decay of traffic congestion without taking into account any influence of
external factors like ramps or intersections on driver’s behavior. The stocha-
stic variable n(t) is the number of cars which are bounded in the jam at time
t. A queue or platoon of n vehicles is also called car cluster of size n.

When the initial jam size is finite, given by the value n(t = 0) = n0

the trajectory n(t) = n0, n0 − 1, . . . , 2, 1, 0 consists of unit jumps at random
times. The jam starting with size n0 becomes smaller and smaller and dis-
solves completely. This one–step stochastic process is a death process only,
sometimes called Poisson process.

Defining p(n, t) as the probability to find a jam of size n at time t, the
master equation for the dissolution process reads

∂

∂t
p(n, t) = w−(n+ 1)p(n+ 1, t)− w−(n)p(n, t) (217)

with the decay rate per unit time assumed as

w(n′, n) = w(n− 1, n) ≡ w−(n) =
1

τ
. (218)

In this approximation the experimentally known waiting time constant τ is a
given control parameter in our escape model. It is a reaction time of a driver,
about 1.5 or 2 seconds, to escape from the jam when the road in front of his
car becomes free. Therefore the transition rate (218) is a constant w− = 1/τ
independent of jam size n.

For the described process of jam shrinkage (n0 ≥ n ≥ 0), starting with
cluster size n = n0 and ending with n = 0, we thus obtain the following
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master equation including boundary conditions (compare (204) – (206))

∂

∂t
p(n0, t) = −1

τ
p(n0, t) , (219)

∂

∂t
p(n, t) =

1

τ
[p(n+ 1, t)− p(n, t)] , n0 − 1 ≥ n > 0 , (220)

∂

∂t
p(0, t) =

1

τ
p(1, t) (221)

and initial probability distribution p(n, t = 0) = δn,n0 . The delta–function
means that at the beginning the vehicular queue consists of exactly n0 cars.

In order to find the explicit expression of the probability distribution
p(n, t) we have to solve the set of equations (219) – (221). This can be done
analytically starting with the first equation, getting p(n0, t) = exp(−t/τ)
as exponential decay function, inserting the solution into the next equation
for p(n0 − 1, t), solving it and continue iteratively up to p(0, t). The general
solution of the probability p(n, t) to observe a car cluster of size n at time t
is

p(n, t) =
(t/τ)n0−n

(n0 − n)!
e−t/τ , 0 < n ≤ n0 , (222)

p(0, t) = 1−
n0−1∑
m=0

(t/τ)m

m!
e−t/τ . (223)

As already mentioned (211), the probabilities are always normalized to unity,
which can be proven by summation

∑n0

n=0 p(n, t) inserting (222, 223) to get
one. The time evolution of the probability p(n, t) has been calculated from
Eqs. (222) and (223) for an initial queue length n0 = 50.

The average or expectation value 〈n〉 of the cluster size n is usually given
by

〈n〉(t) ≡
n0∑
n=0

n p(n, t) =

n0∑
n=1

n p(n, t) (224)

and can be calculated using the known probabilities (222) to get the exact
result

〈n〉(t) = n0Q(n0 − 1, t)− t

τ
Q(n0 − 2, t) (225)

where Q(n, t) is an abbreviation called Poisson term

Q(n, t)
def
= e−t/τ

n∑
m=0

(t/τ)m

m!
. (226)
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The variance or second central moment 〈〈n〉〉(t) which measures the fluctua-
tions is given by

〈〈n〉〉 = 〈(n− 〈n〉)2〉 = 〈n2〉 − 〈n〉2 (227)

and can be also calculated as follows

〈〈n〉〉(t) = n0

[
n0 Q(n0 − 1, t)− 2t

τ
Q(n0 − 2, t)

]
(1−Q(n0 − 1, t))

+

(
t

τ

)2 [
Q(n0 − 3, t)−Q2(n0 − 2, t)

]
+
t

τ
Q(n0 − 2, t) . (228)

In some approximation, where we set Q(n, t) (226) to one, the mean value
(225) reduces to a linearly decreasing function in time

〈n〉(t) ≈ n0 − t/τ , (229)

whereas the variance (228) to a linearly increasing behavior

〈〈n〉〉(t) ≈ t/τ . (230)

In the case of linear mean value approximation (229) the time required, that
the jam dissolves totally, is given by

tend = n0τ . (231)

Equations (229) and (230), however, do not describe the final stage of
dissolution of any finite car cluster. In this case, taking the limit t → ∞ in
the time dependent results (222) and (223), we have

lim
t→∞

p(n, t) = δn,0 . (232)

If we do not consider the final stage of dissolution of a large cluster, i. e.,
if t is remarkably smaller than tend (231), then the probability p(0, t) that the
cluster is completely dissolved is very small. This allows us to obtain correct
results for n > 0 by the following alternative method.

Let us define the generating function G(z, t) by

G(z, t)
def
=
∑
n

znp(n, t) . (233)

According to the actually considered situation, the particular term p(0, t) in
this sum is negligible, so that the lower limit of summation may be taken from
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n = 1 instead of n = 0. The initial condition corresponding to p(n, 0) = δn,n0

is represented by
G(z, 0) = zn0 . (234)

The equation for the generating function is obtained if both sides of the
master equation (220) are multiplied by zn performing the summation over
n afterwards. This yields

∂

∂t
G(z, t) =

1

τ

(
1

z
− 1

)
G(z, t) . (235)

The solution of partial differential equation (235) with respect to the initial
condition (234) is given by

G(z, t) = zn0 exp

[
t

τ

(
1

z
− 1

)]
. (236)

The previous result for p(n, t) at n ≥ 1 (222) is obtained from this equation
after substitution by (233) and expansion of the exponent in z. Starting from
(236)

G(z, t) = zn0 e−t/τ exp

(
t

τ

1

z

)
(237)

the power series is written as follows

G(z, t) =
∑
n

znp(n, t) = zn0 e−t/τ
∑
m

1

m!

(
t

τ z

)m
(238)

= e−t/τ
∑
m

1

m!

(
t

τ

)m
zn0−m (239)

= e−t/τ
∑
n

1

(n0 − n)!

(
t

τ

)n0−n

zn (240)

and therefore we get by comparison of same order terms the Poisson distri-
bution (222)

p(n, t) =
(t/τ)n0−n

(n0 − n)!
e−t/τ . (241)

The above discussed simple model can be improved to describe the disso-
lution of a vehicle queue at a signalized road intersection taking into account
the car dynamics of the starting behavior when red traffic light is switched
to green. The quantity we are interested in is a modified detachment proba-
bility (218) which now depends on the cluster size n. For a long queue the
detachment rate w−(n) has constant value 1/τ consistent with (218). Howe-
ver, due to the time spent for acceleration of the first cars and movement
toward the stop line, the detachment rate is changed for smaller queues.
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3.6 Traffic Jam Formation on a Circular Road

In the following we consider the attachment of a vehicle to the car cluster
and the detachment from it as elementary stochastic events. The traffic thus
is treated as a one–step Markov process described by the general master
equation (204)

∂

∂t
p(n, t) = w+(n− 1) p(n− 1, t) + w−(n+ 1) p(n+ 1, t)

− [w+(n) + w−(n)] p(n, t) . (242)

Now the basic problem is to find an appropriate ansatz for both transition
probabilities w+(n) and w−(n). Note that physical boundary conditions (0 ≤
n ≤ N) for master equation (242) are ensured by formally setting P (−1, t) =
P (N + 1, t) = 0 and w+(N) = w−(0) = 0. The latter two transitions are
impossible physically and they are not included in our further analysis. As
before (218), we assume a constant value for the escape rate w−(n), i. e.,

w−(n) = w− =
1

τ
. (243)

The probability per time unit w+(n) that a vehicle is added to a car cluster of
size n is estimated based on the following physical model. The total number
of cars is N . They are moving along a circular one–lane road of length L. If
a road is crowded by cars, each car requires some minimal space or length
which, obviously, is larger than the real length of a car. We call this the
effective length ` of a car. The distance between the front bumpers of two
neighboring cars, in general, is `+∆x. The distance ∆x can be understood as
the headway between two “effective” cars which, according to our definition,
is always smaller than the real bumper–to–bumper distance. The maximal
velocity of each car is vmax. The desired (optimal) velocity vopt, depending
on the distance between two cars ∆x, is given by the formula

vopt(∆x) = vmax
(∆x)2

D2 + (∆x)2
, (244)

where the parameter D, called the interaction distance, corresponds to the
velocity value vmax/2. According to the ansatz (244) the optimal velocity is
represented by a sigmoidal function with values ranging from 0, correspon-
ding to zero distance between cars, to vmax, corresponding to an infinitely
large distance or absence of interaction between cars. Our assumption is that
a vehicle changes its velocity from vopt(∆xfree) in free flow to vopt(∆xclust) in
jam and approaches the cluster as soon as the distance to the next car (the
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last car in the cluster) reduces from ∆xfree to ∆xclust. This assumption allows
one to calculate the average number of cars joining the cluster per time unit
or the attachment frequency w+(n) to an existing car cluster. Thus, we have
the ansatz valid for 1 ≤ n < N

w+(n) =
vopt(∆xfree(n))− vopt(∆xclust)

∆xfree(n)−∆xclust

. (245)

This equation (245) requires the knowledge of ∆xfree and ∆xclust as a func-
tion of the cluster size n. Measurements on highways have shown that the
density of cars in congested traffic is independent of the size of the dense con-
gested phase (jam). As a consequence, the distance between jammed cars,
the spacing ∆xclust, has a constant value which has to be treated as a given
measured quantity or known control parameter. We have defined the length
of the car cluster or jam size depending on the number of congested cars n
by

Lclust = ` n+ ∆xclust S(n) , (246)

where

S(n) =

{
0 : n = 0

n− 1 : n ≥ 1
(247)

is the number of spacings of size ∆xclust. In such a way, we have for the total
length of road

L = ` n+ ∆xclust S(n)︸ ︷︷ ︸
Lclust

+ `(N − n) + ∆xfree(N − S(n))︸ ︷︷ ︸
Lfree

, (248)

where
Lfree = L− Lclust = L− {` n+ ∆xclust S(n)} (249)

denotes the length of the non–congested or free road. For Lfree we can write
according to (248) also

Lfree = `(N − n) + ∆xfree(N − S(n)) . (250)

Comparing these two equations we obtain for the distance in free flow de-
pending on cluster size

∆xfree(n) =
L− `N −∆xclust S(n)

N − S(n)
. (251)

By this all the transition probabilities (245) are defined except the tran-
sition from the state without any cluster n = 0 to the smallest cluster size
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n = 1. This transition and the meaning of the state with a single conge-
sted car (n = 1) called precluster requires some explanation. Some stochastic
event or perturbation of the free traffic flow, which is represented by n = 0,
is necessary to initiate the formation of a cluster. Such stochastic events
are simulated assuming that one of the free cars can reduce its velocity to
vopt(∆xclust), i. e., become a single congested car or a cluster of size n = 1.
This process is characterized by the transition frequency w+(0) which cannot
be calculated from the ansatz (245), but have to be considered as one of the
control parameters of the model. A cluster of size one appears also when
a two–car cluster is reduced by one car. In this consideration the vehicular
cluster with size n = 1 is a car which still have not accelerated after this
event. In any case, a precluster is defined as a single car moving with the ve-
locity vopt(∆xclust). Since at n = 0 any of the N free cars has an opportunity
to become a single congested car, an appropriate ansatz for the transition
frequency w+(0) is

w+(0) =
p

τ
N , (252)

where p > 0 is a dimensionless constant called the stochastic perturbation
parameter or stochasticity.

In natural sciences and especially in physics it is usually accepted to write
all the basic equations in dimensionless variables. It is suitable to introduce
the dimensionless time T via T = t/τ and the dimensionless distances nor-
malized to `, i. e., ∆y = ∆x/`, d = D/`, ∆yclust = ∆xclust/` and ∆yfree =
∆xfree/`, as well as the dimensionless optimal velocity wopt = vopt/vmax.

Then the basic equations of this section can be rewritten as follows. The
master equation for the scaled probability distribution P (n, T ) instead of
p(n, t):

1

τ

∂

∂T
P (n, T ) = w+(n− 1) P (n− 1, T ) + w−(n+ 1) P (n+ 1, T )

− [w+(n) + w−(n)] P (n, T ) ; (253)

the optimal velocity definition:

wopt(∆y) =
(∆y)2

d2 + (∆y)2
; (254)
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the transition frequencies:

w−(n) = w− =
1

τ
, 1 ≤ n ≤ N , (255)

w+(0) =
1

τ
pN , (256)

w+(n) =
vmax

`

[vopt(∆xfree)− vopt(∆xclust)] /vmax

[∆xfree −∆xclust] /`

=
1

τ
b
wopt(∆yfree(n))− wopt(∆yclust)

∆yfree(n)−∆yclust

, 1 ≤ n ≤ N − 1 (257)

with dimensionless parameter

b = vmaxτ/` ; (258)

and the ansatz for the cluster length and related quantities:

Lclust

`
= n+ ∆yclust S(n) = c−1

clust n , (259)

Lfree

`
= N − n+ ∆yfree(N − S(n)) = c−1

free (N − n) , (260)

∆yfree(n) =
L/`−N −∆yclust S(n)

N − S(n)
. (261)

According to the definitions, c = `N/L = `% is the total density of cars,
cclust = n `/Lclust and cfree = (N − n)`/Lfree are the densities in jam and in
the free flow, respectively.

In the stochastic approach an equation can be obtained for the average
cluster size 〈n〉. Based on the master equation (204), we get a deterministic
equation for the mean value

d

dt
〈n〉 =

d

dt

∑
n

np(n, t) = 〈w+(n)〉 − 〈w−(n)〉 , (262)

which can be written in a certain approximation as follows

d

dt
〈n〉 ≈ w+(〈n〉)− w−(〈n〉) , (263)

describing the time evolution of the average cluster size 〈n〉. The stationary
cluster size 〈n〉st can be calculated from the condition d〈n〉/dt = 0.
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3.7 Derivation of Fokker–Planck Equation

The master equation as well as the Fokker–Planck equation are useful to
describe the time development of the probability density function p(x, t) for
a continuous variable x.

In the following we want to discuss the one–dimensional case in detail.
The Fokker–Planck equation follows from the master equation (186)

∂p(x, t)

∂t
=

+∞∫
−∞

{w(x, x′, t)p(x′, t)− w(x′, x, t)p(x, t)} dx′ (264)

due to the Kramers–Moyal expansion where only the first two leading terms
are retained. In distinction to (186), here we allow as a more general case
that the transition frequencies depend on time t. The derivation can be found
in many textbooks.

By introducing the quantity f(y, x, t) = w(x + y, x, t), the master equa-
tion (264) can be written as

∂p(x, t)

∂t
=

+∞∫
−∞

{f(y, x− y, t)p(x− y, t)− f(y, x, t)p(x, t)} dy . (265)

It is assumed that f(y, x− y, t) is a smooth function with respect to y. The
basic idea is to expand the quantity f(y, x− y, t)p(x− y, t) in a Taylor series
around y = 0, which yields the Kramers–Moyal expansion

∂p(x, t)

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂xn
[αn(x, t) p(x, t)] , (266)

where

αn(x, t) =

+∞∫
−∞

ynf(y, x, t) dy =

+∞∫
−∞

(x′ − x)nw(x′, x, t) dx′ (267)

are the nth order moments of the transition frequencies w(x′, x, t). Retai-
ning only the first two expansion terms in (266) one obtains the well–known
Fokker–Planck equation (36) in forward notation

∂p(x, t)

∂t
= − ∂

∂x
[α1(x, t) p(x, t)] +

1

2

∂2

∂x2
[α2(x, t) p(x, t)] . (268)
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The first term in (268) is called the drift term and the second one – the dif-
fusion or fluctuation term. This is due to the analogy with a drift–diffusion
equation where the first derivative describes the drift of the probability profile
without changing its form, whereas the second one describes the pure diffusi-
on effect. In fact, (36 or 268) is a drift–diffusion equation for the probability
p(x, t). The diffusion or effluence of the probability distribution profile oc-
curs due to the stochastic fluctuations, therefore the second term in (268)
is also called the fluctuation term. More explicitly Eq. (268) is called the
forward Fokker–Planck equation to distinguish from the backward Fokker–
Planck equation which describes the evolution of the conditional probability
p(x, t | x′, t′) with respect to the initial time t′.
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4 Langevin Equation

4.1 Traditional View on the Langevin Equation

Langevin equation describes the dynamics of a system in presence of an inter-
action with environment. For simplicity here we consider a one–dimensional
case, where the state of the system is characterized by a scalar quantity x(t)
which depends on time t. The time evolution is described by the Langevin
equation

dx

dt
= f(x) + ψ(x) ξ(t) (269)

together with the initial condition

x(t = 0) = x0 . (270)

Here the dynamics of the system itself is given by the deterministic force
f(x), whereas the interaction with the environment is represented by the
stochastic or Langevin force ψ(x)ξ(t), where ψ(x) is the noise intensity. If
the latter one is constant then the Langevin force represents an additive noise.
The intensity ψ(x) may depend on x in general. In this case we deal with the
so–called multiplicative noise. In the classical case ξ(t) is the Gaussian white
noise, representing random and normally distributed fluctuations, which are
completely uncorrelated for different time moments.

It is important to notice, however, that other kind of noise ξ(t) also may
be of interest. For example, the Markovian dichotomous noise represents a
stochastic process of switching between two discrete values. This type of noi-
se is frequently used for modeling of various phenomena in biology, physics,
and chemistry. States of the dichotomous process can be associated, e. g.,
with two different levels of external stimuli, presence or absence of an ex-
ternal perturbation, etc. It is interesting to mention that a combination of
dichotomous and white noise can lead to a bimodal probability distributi-
on even in a system with single–well potential φ(x) = αx2/2 or linear force
f(x) = −dφ/dx. Thus, the noise can significantly change the behavior of a
system. In this sense we can speak about noise–induced phase transitions.

4.2 Additive White Noise

Historically, the Langevin equation has been designed to describe the Brow-
nian motion, assuming ψ(x) = σ in (269) as a constant. This is the usual
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case of the Langevin equation with the additive noise

dx

dt
= f(x) + σξ(t) . (271)

In general, ξ(t) is a randomly fluctuating quantity. Traditionally it is the
white noise, which has the following properties

〈ξ(t)〉 = 0 , (272)

〈ξ(t)ξ(t′)〉 = δ(t− t′) . (273)

The equation (271) can be formulated as a stochastic differential equation
with the initial condition (270). It is the conventional form of writing used
in mathematical literature, i. e.,

dx(t) = f(x(t))dt+ σ dW (t) ; x(t = 0) = x0 , (274)

where W (t) is the standard Wiener process with the following properties

〈W (t)〉 = 0 , (275)

〈W (t)W (t′)〉 = min(t, t′) . (276)

For the increments of the Wiener process dW (t) = W (t + dt) − W (t) at
dt→ 0 we have

〈dW (t)〉 = 0 , (277)

〈dW (t)dW (t′)〉 =

{
dt , t′ = t
0 , t′ 6= t

(278)

The formal relation between the Wiener process and the Langevin force
is given by

ξ(t) =
dW (t)

dt
⇐⇒ W (t) =

t∫
0

ξ(s)ds . (279)

Here we would like to mention that the formal solution of (274) is

x(t) = x0 +

t∫
0

f(x(s))ds+ σW (t) . (280)

This, however, is only a different formulation of the problem by rewriting the
stochastic differential equation (274) as an integral equation (280). Since the
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right hand side of (280) contains the unknown function x(s), it cannot serve
as a solution in practical applications.

The probability density distribution p(x, t) for the variable x at time t is
given by the following Fokker–Planck equation which corresponds to (271)
or (274) respectively

∂

∂t
p(x, t) = − ∂

∂x
[f(x)p(x, t)] +

σ2

2

∂2p(x, t)

∂x2
(281)

with the initial condition

p(x, t = 0) = δ(x− x0) . (282)

The averages over ensemble of stochastic realizations, like the mean value
〈x(t)〉 and the correlation function 〈x(t)x(t′)〉, can be expressed in terms of
the probability distribution functions as

〈x(t)〉 =

∞∫
−∞

xp(x, t)dx , (283)

〈x(t)x(t′)〉 =

∞∫
−∞

∞∫
−∞

xy p(x, t; y, t′) dxdy . (284)

Here p(x, t; y, t′) is the joint probability density for two time moments.

Returning to the Langevin equation (271), first let us consider the dyna-
mics without fluctuations, which is given by the equation with σ = 0,

dx

dt
= f(x) . (285)

The force can be represented as

f(x) = −dφ(x)

dx
, (286)

where φ(x) is the potential. A simple classical example is the double–well
potential

φ(x) =
α

2
x2 +

β

4
x4 , (287)

where β > 0. It has one minimum if α > 0 and two minima if α < 0. The
corresponding force is

f(x) = −αx− βx3 . (288)
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The stationary solutions of (285) are the roots of the equation f(x) = 0 or
the extremum points of the potential φ(x). They are given by

x(α + βx2) = 0 . (289)

One root always is x0 = 0. At α ≥ 0 this is the only real solution. At
α < 0, two other real solutions appear x1,2 = ±

√
−α/β corresponding to

two minima of the potential. The solution x0 = 0 corresponds to the only
minimum of the potential at α > 0, which is changed to the maximum at α <
0. Minimum of φ(x) always corresponds to a stable, whereas maximum to an
unstable solution of (285), as it follows from the stability analysis considering
small deviations from the extremum point. These solutions depending on
the parameter α represent the so–called supercritical bifurcation diagram. It
is called supercritical, since the stable branches merge continuously at the
bifurcation point α = 0.

A bifurcation diagram of an other kind emerges for the potential

φ(x) =
α

2
x2 +

β

4
x4 +

γ

6
x6 (290)

with β < 0 and γ > 0. It corresponds to

f(x) = −αx− βx3 − γx5 . (291)

In this case the equation f(x) = 0 has five roots, some of which may be
complex. One solution is x0 = 0. The other four roots are given by

x1,2,3,4 = ±

√√√√− β

2γ
±

√(
β

2γ

)2

− α

γ
. (292)

Only the real solutions have physical meaning. Besides, the solutions cor-
responding to the minima of the potential are stable, whereas those repre-
senting the maxima are unstable. At α > β2/(4γ) the only real solution is
x0 = 0. All five solutions are real within 0 ≤ α ≤ β2/(4γ). Three of them, in-
cluding x0 = 0, are stable and correspond to three minima of φ(x). The other
two roots represent two local maxima in between. At α = 0, the minimum at
x = 0 transforms into the maximum and two other maxima disappear. Thus,
at α < 0 there are two stable solutions and one unstable solution x0 = 0.
This is the corresponding so–called subcritical bifurcation diagram.

In distinction to the supercritical bifurcation diagram here the stable
nonzero branches start at certain nonzero x values at α = β2/(4γ), where
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the x0 = 0 branch still is stable. Therefore the system cannot switch to
these nonzero branches if the initial x value is near zero. In the deterministic
dynamics it first happens with a jump only at α = 0 if α is decreased. If
α is increased, starting from negative values, then a jump from one of the
nonzero stable solutions to the zero solution occurs at α = β2/(4γ) > 0. In
other words, a hysteresis is observed.

The behavior of the dynamical system in the case of supercritical as well
as subcritical bifurcation is essentially changed by the noise included in the
Langevin equation (271). Due to the noise, the system with potential (287)
can be randomly switched between two stable states x1,2 = ±

√
−α/β at

α < 0, which is never possible in the deterministic dynamics. Similarly, in
the system with potential (290), the noise enables a switching between three
stable states within 0 ≤ α ≤ β2/(4γ), or between two stable branches of the
bifurcation diagram at α < 0. Considering an ensemble of different stocha-
stic realizations of the process ξ(t), the Langevin equation (271) allows to
calculate the probability density p(x, t) to have certain value of x at time
t. The stationary probability density pst(x) = limt→∞ p(x, t) is given by the
stationary solution of the corresponding Fokker–Planck equation (281), i. e.,

pst(x) =
e−2φ(x)/σ2

∞∫
−∞

e−2φ(x)/σ2dx

. (293)

4.3 Brownian Motion in Three–Dimensional Velocity
Space

Consider first a deterministic motion of a Brownian particle with initial ve-
locity v(t = 0) = v0 in a medium (liquid) with friction. Here velocity is a
three–dimensional vector. Its time evolution is described by the equation

dv(t)

dt
= −γv(t) , (294)

where γ is the friction coefficient. The solution reads

v(t) = v0e
−γt . (295)

Thus, in this simple model the particle reduces asymptotically its velocity
to zero due to the friction. This equation, however, does not completely
describe the motion of a particle in liquid. One needs to take into account
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the randomness caused by stochastic collisions with liquid molecules, which
never allow to relax the velocity to zero. This effect is described by the
Langevin equation

dv(t)

dt
= −γv(t) +

√
2B ξ(t) , (296)

where (294) is completed by a stochastic (Langevin) force
√

2B ξ(t). Here B
is the diffusion coefficient in the velocity space and ξ(t) is a three–dimensional
vector with components ξi(t), representing a stochastic process. The actual
Brownian motion in the space of velocity v and coordinate x is known as the
Ornstein–Uhlenbeck process.

The stochastic force should have the following properties.

1. Each component of the stochastic force has zero mean value

〈ξi(t)〉v0 = 0 , (297)

where the symbol v0 indicates that only those stochastic realizations are
considered for which v(t = 0) = v0 holds. It means that the stochastic
force has no influence on the averaged motion.

2. The Langevin force is the Gaussian stochastic process, which means
that all higher order correlation functions reduce to the two–time cor-
relation function 〈ξi(t1)ξj(t2)〉v0 according to

〈ξ(t1)ξ(t2) · · · ξ(t2n)〉v0 =
∑

all pairings

〈ξ(ti)ξ(tj)〉v0 · · · 〈ξ(tk)ξ(tl)〉v0 .

(298)
Like the first moment (297), all odd–order moments are zero.

3. The 〈ξi(t)ξj(t′)〉v0 function is δ–correlated in time

〈ξi(t)ξj(t′)〉v0 = δijδ(t− t′) . (299)

Besides, this formula implies that different components are uncorrelated
or statistically independent.

4. The stochastic process for the velocity v(t) of the Brownian particle
is statistically independent of the stochastic force

√
2B ξ(t′) for t′ > t,

i. e., v(t) at a given time moment is independent of the stochastic force
in future:

〈v(t)ξ(t′)〉v0 = 0 for t′ > t . (300)

The velocity v(t), naturally, will be affected by ξ(t′) at t′ < t.
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In the following we consider two different ways to get the solution of the
Langevin equation (296) – by direct integration. The direct integration yields
a formal solution for each specific realization of the stochastic process ξ(t),

v(t) = v0e
−γt + e−γt

t∫
0

eγt
′√

2B ξ(t′) dt′ , (301)

as it can be verified by inserting (301) into (296). This solution allows us to
calculate moments of the velocity distribution for the ensemble of all stocha-
stic realizations with given initial velocity v0. The first moment is

〈v(t)〉v0 = v0e
−γt + e−γt

t∫
0

eγt
′√

2B 〈ξ(t′)〉v0dt
′ . (302)

The last term vanishes, since the Langevin force has zero mean value, as
discussed above. Thus we have

〈v(t)〉v0 = v0e
−γt . (303)

The correlation function 〈v(t)v(t′)〉v0 for velocities at different time moments
also can be calculated in this way. Alternatively, the correlation function can
be defined for deviations from the mean values as 〈(v(t) − 〈v(t)〉)(v(t′) −
〈v(t′)〉)〉v0 . Both definitions are equivalent for long times, where the mean
velocity 〈v(t)〉v0 tends to zero. For definiteness we assume that t′ > t holds.
Then for any velocity component we have

〈vi(t)vi(t′)〉v0 = v2
i,0 e

−γ(t′+t) + 2Be−γ(t′+t)

t∫
0

t′∫
0

e+γ(s′+s)〈ξi(s)ξi(s′)〉dsds′

= v2
i,0 e

−γ(t′+t) + 2Be−γ(t′+t)

t∫
0

eγ(s+s)ds

= v2
i,0 e

−γ(t′+t) +
B

γ

(
e−γ(t′−t) − e−γ(t′+t)

)
. (304)

By using the definition of scalar product, the correlation function 〈v(t)v(t′)〉v0

is easily calculated from (304) as

〈v(t)v(t′)〉v0 =
∑
i

〈vi(t)vi(t′)〉v0 . (305)
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The second moment for each velocity component is obtained from (304)
by setting t′ = t, i. e.,

〈v2
i (t)〉v0 = v2

i,0 e
−2γt +

B

γ

(
1− e−2γt

)
. (306)

Apart from the mean values, the probability density p(vx, vy, vz, t) in the
three–dimensional velocity space also is of interest. Taking into account that
the velocity components in (296) are not coupled, their probability distribu-
tions are independent, and we have

p(vx, vy, vz, t) = p(vx, t) p(vy, t) p(vz, t) , (307)

where p(vx, t), p(vy, t), and p(vz, t) are the probability densities for one com-
ponent. The latter ones can be calculated by solving the corresponding
Fokker–Planck equation for one–dimensional problem. Here we only report
the result

p(vi, t) =
1√

2πσ2(t)
exp

[
−(vi − vi,0 exp[−γt])2

2σ2(t)

]
, (308)

where i = x, y, z denotes the i-th component of vector v and

σ2(t) = 〈v2
i 〉 − 〈vi〉2 =

B

γ
(1− exp[−2γt]) (309)

is the variance consistent with (303) and (306).

For large times t the initial state (velocity v0) is forgotten and the final
equilibrium state is given by

lim
t→∞
〈v2
i (t)〉v0 = B/γ . (310)

On the other hand, it is well known that

〈v2
i 〉 =

kBT

m
(311)

holds in the equilibrium of a classical system. Comparing (310) and (311) we
arrive to the relation

B

γ
=
kBT

m
(312)

known as the Einstein formula. It relates the macroscopic quantity (fricti-
on coefficient) γ, which describes the dissipation of the momentum, to the
microscopic quantity (diffusion coefficient) B, which describes the stochastic
force.
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