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The Importance of Being Noisy – Stochasticity in Science

Why stochastic tools? When you asked alumni graduated from Euro-
pean universities moving into nonacademic jobs in society and industry what
they actually need in their business, you found that most of them did stocha-
stic things like time series analysis, data processing etc., but that had never
appeared in detail in university courses.

Aim The general aim is to provide stochastic tools for understanding of
random events in many beautiful applications of different disciplines ranging
from econophysics up to sociology which can be used multidisciplinary.

State of the art General problem under consideration is the theoretical
modeling of complex systems, i. e. many–particle systems with nondetermi-
nistic behavior. In contrast to established classical deterministic approach
based on trajectories we develop and investigate probabilistic dynamics by
stochastic tools such as stochastic differential equation, Fokker–Planck and
master equation to get probability density distribution. The stochastic ap-
paratus provides more understandable and exact background for describing
complex systems. The idea goes back to Einstein’s work on Brownian motion
in 1905 which explains diffusion process as fluctuation problem by Gaussian
law as a special case of Fokker–Planck equation.
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1 Random Walker (Brownian Particle)

1.1 From Random Walk to Diffusion

Comparing deterministic dynamics and stochastic motion. Each dynamical
system (without randomness) has a unique solution called trajectory which
is either a regular or an irregular (chaotic) motion. On the other hand, a
stochastic process describes temporal evolution of random events by proba-
bilities (discrete case) or probability densities (continuous case). A stochastic
trajectory is a sequence of states and times measured as time series.

The stochastic motion by discrete probabilistic jumps on an (asymme-
trically) Galton board is called random walk. The random walk proceeds
by discrete steps and is described by the diffusion equation in the continu-
um limit. The concept of the random walk, also called drunkard’s walk, was
introduced into science by Karl Pearson in a letter to Nature in 1905:

A man starts from a point 0 and walks l yards in a straight line:
he then turns through any angle whatever and walks another l
yards in a straight line. He repeats this process n times. I require
the probability that after these n stretches he is at a distance
between r and r + δr from the starting point 0.

The random walk on a line is much simpler. The positions are spaced
regularly along a line. The walker has two possibilities: either one step to right
(+1) with probability p or one step to left (−1) with probability q = 1 − p.
Symmetric case (pure diffusion) means p = q = 1/2.

The probability P (m,n+ 1) that the walker is at position m after n+ 1
steps is given by the set of probabilities P (m±1, n) after n steps in accordance
with the Markov chain equation (difference equation)

P (m,n+ 1) = pP (m− 1, n) + q P (m+ 1, n) . (1)

The solution of (1) is the binomial distribution

P (m,n) =
n!

[(n+m)/2]! [(n−m)/2]!
p(n+m)/2 q(n−m)/2 . (2)

The first moment of this probability distribution is

〈m〉(n) =
n∑

m=−n

mP (m,n) = 2n

(
p− 1

2

)
(3)
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and the second moment is

〈m2〉(n) =
n∑

m=−n

m2P (m,n) = 4npq + 4n2

(
p− 1

2

)2

. (4)

Hence, the root–mean–square is given by

σ(n) =
√〈

(m− 〈m〉)2〉 =

√
〈m2〉 − 〈m〉2 =

√
4npq , (5)

and the relative width (error)

σ

〈m〉
=

√
4np(1− p)

2n(p− 1/2)
=

√
p(1− p)

(p− 1/2)2

1√
n
' n−1/2 (6)

tends to zero when n goes to infinity.

After a series of n steps of equal length the particle (called drunken sailor
as random walker) could be find at any of the following points

m = {−n,−n+ 1, . . . ,−1, 0,+1, . . . , n− 1, n} . (7)

Position m consists of k steps in one direction (success) and n−k in opposite
direction (failure)

m = k − (n− k) = 2k − n . (8)

For the k successes we get

k =
1

2
(n+m) . (9)

Starting with the well–known binomial distribution for discrete probabilities

P (m,n) ≡ B(k, n) =

(
n

k

)
pk(1− p)n−k (10)

we reduce to the symmetric case (p = 1/2)

P (m,n) =
n!

k!(n− k)!

(
1

2

)n
=

n!

[(n+m)/2]! [(n−m)/2]!

(
1

2

)n
. (11)

Further on we introduce (still discrete) coordinate xm = dm and time tn =
τ n, where d is the hopping distance (a length unit) and τ is the time step
(a time unit) and rewrite the binomial distribution (11) as P (xm, tn).
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After introducing a new control parameter

D =
d2

τ
, (12)

called diffusion coefficient, we consider the continuum limit where length unit
d and time unit τ both tend to zero in such a way that D remains constant. In
this case the physically interesting quantity is the probability density p(x, t),
i. e., the probability p(x, t)dx to find a particle within [x, x+ dx] multiplied
by the interval length dx, which equals to 2d.

Taking into account the definition (12), we finally obtain the Gaussian
distribution

p(x, t) =
1√

2πDt
exp

(
− x2

2Dt

)
. (13)

The dynamics of probability density p(x, t) (13) for a one–dimensional
random walk is given by the one–dimensional diffusion equation (partial dif-
ferential equation)

∂p(x, t)

∂t
=
D

2

∂2p(x, t)

∂x2
. (14)

To obtain certain solution, the diffusion equation (14) has to be completed
by initial and boundary conditions. We consider the initial condition p(x, t =
0) = δ(x − 0) given by the delta function (a sharp peak at x = 0), which
physically means that the random walk starts at x = 0, as well as natural
boundary conditions limx→±∞ p(x, t) = 0.

Home work related to Chapter 1.1 (Abgabe am 28.10.2013)

1. Calculate the zeroth, first and second moment of probability (2).

2. It is known that function (13) solves equation (14). Investigate the
general case of drift–diffusion and guess a function which solves the
following drift–diffusion equation

∂p(x, t)

∂t
= −vdrift

∂p(x, t)

∂x
+
D

2

∂2p(x, t)

∂x2
.

3. Repeat the calculations of zeroth, first and second moment for proba-
bility density p(x, t) (drift–diffusion case) and discuss the solutions.

4. Derive from one–dimensional diffusion equation (14) the well–known so-
lution (13) using the following ansatz of product type p(x, t) = g(t)f(x).
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1.2 From Random Walker to Vehicular Traffic:
Motion on a Circle

1.2.1 Asymmetric Random Walker: Position and time are discrete

Asymmetric random walker. Starting with Markov chain (p+ q = 1)

P (m,n+ 1) = pP (m− 1, n) + q P (m+ 1, n) (15)

together with a precisely given initial position

P (m,n = 0) = δm,m0 (16)

setting m0 = 0 for simplicity. We have discrete position m = 0,±1,±2, . . .
and discrete time n = 0, 1, 2, . . . .
The solution of (15) is well known called Binominal distribution

P (m,n) =
n!

[(n+m)/2]! [(n−m)/2]!
p(n+m)/2 q(n−m)/2 . (17)

It is related to the Binominal formula (take a ≡ p and b ≡ q)

(a+ b)n =
n∑
r=0

(
n

r

)
ar bn−r =

n∑
r=0

n!

r! (n− r)!
ar bn−r (18)

with r = (n+m) /2 and n− r = (n−m) /2.

How to get the solution (17)? We use spatial Fourier transformation given
as

P̃ (k, n) =
n∑

m=−n

P (m,n) eikm , (19)

P (m,n) =
1

2π

∫ π

−π
P̃ (k, n) e−ikm dk . (20)

To prove this we use the orthogonality relation∫ π

−π
e−ik(m−m′) dk = 2π δm′,m . (21)

The calculations to get a Markov chain equation in k–space are as follows∑
m

P (m,n+ 1) eikm = p
∑
m

P (m− 1, n) eikm + q
∑
m

P (m+ 1, n) eikm(22)

P̃ (k, n+ 1) = p
∑
m′

P (m′, n) eik(m′+1) + q
∑
m′′

P (m′′, n) eik(m′′−1)

=
(
p eik + q e−ik

)
P̃ (k, n) . (23)
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This iterative equation has a very simple solution given as

P̃ (k, n) =
(
p eik + q e−ik

)n
P̃ (k, n = 0) (24)

with initial condition in k–space P̃ (k, n = 0) = eikm0 = 1 if m0 = 0.
Using the inverse transformation (20) we get

P (m,n) =
1

2π

∫ π

−π

(
p eik + q e−ik

)n
e−ikm dk . (25)

Taking the Binominal formula (18) into account we receive

P (m,n) =
1

2π

∫ π

−π

[
n∑
r=0

(
n

r

)
pr eikr qn−r e−ik(n−r)

]
e−ikm dk (26)

=
n∑
r=0

(
n

r

)
pr qn−r

1

2π

∫ π

−π
eikr e−ikn eikr e−ikm dk (27)

=
n∑
r=0

(
n

r

)
pr qn−r

1

2π

∫ π

−π
e−ik(m−(2r−n)) dk (28)

=
n∑
r=0

(
n

r

)
pr qn−r δm,2r−n . (29)

Only the term with m = 2r − n remains which gives r = (n + m)/2. The
solution is therefore

P (m,n) =

(
n

(n+m)/2

)
p(n+m)/2 qn−(n+m)/2 , (30)

which is finally identical with the already known solution (17).

Now we switch to random motion on a closed line of finite length having
periodic boundary condition.

1.2.2 Stochastic Motion on a Ring: Position and time are discrete

Once again asymmetric random walker. Starting with Markov chain (p+ q =
1)

P (xm, tn + τ) = pP (xm − a, tn) + q P (xm + a, tn) (31)

having discrete position and time

xm = am , m = 0, 1, 2, . . . ,M − 1 (32)

tn = τ n , n = 0, 1, 2, . . . (33)
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Using xM = aM = L as length of the ring.
Periodicity means

P (xm, tn) = P (xm + L, tn) . (34)

Given initial condition

P (xm, t0 = 0) = δxm,x0 . (35)

Here x0 is the initial coordinate of the random walker, which is not necessarily
zero. Once again we use spatial Fourier transformation, now given as

P̃ (k, tn) =
M−1∑
m=0

P (xm, tn) eikxm , (36)

P (xm, tn) =
1

M

∑
k

P̃ (k, tn) e−ikxm . (37)

with M discrete wave numbers k = 2πl/L for l = 0, 1, . . . ,M − 1.

To prove this we use orthogonality

∑
k

e−ik(xm−xm′ ) =
M−1∑
l=0

e−i(2πl/M)(m−m′) = M δm′,m . (38)

To get a Markov chain equation in discrete k–space similar calculations as
before give

P̃ (k, tn) =
(
p eika + q e−ika

)tn/τ
eikx0 (39)

Inverse transformation generates the following solution

P (xm, tn) =
1

M

∑
k

(
p eika + q e−ika

)tn/τ
e−ika(xm−x0)/a (40)

with
k′ ≡ ka = 2πl/M , l = 0, 1, 2, . . . ,M − 1 . (41)

To consider the limit M →∞ we replace the sum by the integral as follows

1

M

∑
k′

. . . → 1

2π

∫ π

−π
. . . dk′ . (42)

The periodic solution (40) shows the diffusive relaxation from the initi-
al sharp peak (35) to steady state with or without drift depending on the
asymmetry parameter ∆ = p− q. Using ∆ instead of p = 1− q we get(

p eika + q e−ika
)

= cos(ka) + i∆ sin(ka) (43)
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and receive the solution (40) in the following notation

P (xm, tn) =
1

M

∑
k

e−(λ′k−iλ
′′
k)tn e−ik(xm−x0) (44)

with

λ′k = −1

τ
ln

(√
cos2(ka) + ∆2 sin2(ka)

)
(45)

λ′′k =
1

τ
arcsin

(
∆ sin(ka)√

cos2(ka) + ∆2 sin2(ka)

)
=

1

τ
arctan (∆ tan(ka))(46)

Finally we rewrite the periodic solution as

P (xm, tn) =
1

M

∑
k

e−λ
′
ktn [cos(λ′′ktn) cos(k(xm − x0))

+ sin(λ′′ktn) sin(k(xm − x0))] . (47)

This rotating (∆ 6= 0) random walker is, of course, not a model of traffic flow.
This stochastic process explains drift–diffusive motion without interaction
and active behaviour.

1.2.3 Position is discrete and time is continuous

In this case we have the master equation

∂

∂t
P (xm, t) = w+P (xm−1, t) + w−P (xm+1, t)− [w+ + w−]P (xm, t) . (48)

Here xm = ma, m = 0, 1, 2, . . . ,M − 1 are the discrete coordinates, whereas
time t is continuous. The quantities w+ and w− are transition rates, which
in this case are assumed to be constant. As before, motion is on a ring of
lenght L (periodic boundary condition), starting at x0.

To obtain the solution, we use the Fourier transformation

P̃ (k, t) =
M−1∑
m=0

P (xm, t)e
ikxm (49)

P (xm, t) =
1

M

∑
k

P̃ (k, t)e−ikxm (50)
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with k = 2πl/L for l = 0, 1, 2, . . . ,M−1. It gives the equation in the k–space

∂P̃ (k, t)

∂t
=
[
w+e

ika + w−e
−ika − (w+ + w−)

]
P̃ (k, t) = −λkP̃ (k, t) , (51)

where
λk = w+(1− eika) + w−(1− e−ika) . (52)

The complex solution reads

P̃ (k, t) = P̃ (k, 0)e−λkt . (53)

Using the initial condition P (xm, 0) = δxm,x0 and (49), we get

P̃ (k, 0) = eikx0 . (54)

Inserting (53) and (54) into (50), we obtain the solution in the coordinate
space,

P (xm, t) =
1

M

∑
k

e−λkt−ik(xm−x0) . (55)

Further on we represent the complex rate parameter λk as

λk = λ′k − iλ′′k , (56)

where

λ′k = (w+ + w−)(1− cos(ka)) (57)

λ′′k = (w+ − w−) sin(ka) . (58)

It allows us to write the solution in real form as

P (xm, t) =
1

M

∑
k

e−λ
′
kt
(

cos(λ′′kt) cos(k[xm − x0])

+ sin(λ′′kt) sin(k[xm − x0])
)
. (59)

1.2.4 From discrete to continuous time

The solution P (xm, tn) of the model with discrete time and coordinate is
different for odd and even n, i. e., it always makes jumps in time in such
a way that it is zero for odd m and nonzero for even m at one time step
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and vice versa at the next time step. Therefore, we consider the probability
function

P̄ (xm, tn) =
1

2

(
P (xm, tn) + P (xm, tn + τ)

)
, (60)

which is obtained by an averaging over two succesive time steps. This function
is expected to be smoother in time. Considering two succesive steps of the
Markov chain (31),

P (xm, tn + τ) = pP (xm − a, tn) + q P (xm + a, tn) (61)

P (xm, tn + 2τ) = pP (xm − a, tn + τ) + q P (xm + a, tn + τ) , (62)

we obtain the Markov chain

P̄ (xm, tn + τ) = pP̄ (xm − a, tn) + qP̄ (xm + a, tn) (63)

for P̄ (xm, tn). If the initial condition for P (xm, tn) is P (xm, 0) = δxm,x0 , then
for P̄ (xm, tn) we have

P̄ (xm, 0) =
1

2

(
q δxm,x0−a + δxm,x0 + p δxm,x0+a

)
. (64)

Taking into account that p+ q = 1, we can write

P̄ (xm, tn + τ)− P̄ (xm, tn)

τ
=

p

τ
P̄ (xm − a, tn) +

q

τ
P̄ (xm + a, tn)

− p+ q

τ
P̄ (xm, tn) . (65)

The expression on the left hand side of (65) is approximately equal to the
time derivative ∂P̄ (xm, t)/∂t at t = tn for τ � tn, i. e., for a large number
of time steps or large time scale, when the probability distribution P̄ (xm, t)
(but not P (xm, t)) changes very slightly in one time step. It leads to the
master equation

∂P̄ (xm, t)

∂t
= w+P̄ (xm − a, t) + w−P̄ (xm + a, t)− (w+ + w−)P̄ (xm, t) , (66)

where w+ = p/τ and w− = q/τ are the transition rates. Here we consider the
limit t/τ →∞ for a finite τ , since the transition rates have to be finite. For
large t/τ , the solution of (66) with the initial condition (64) is practically
the same as the solution with the initial condition P̄ (xm, 0) = δxm,x0 , since
the shift of the initial coordinate by one lattice constant a is not important.

Thus, at large time scales t/τ � 1, the solution for P̄ (xm, t) is given
by the expression on the right hand side of (59), which is expected to be
approximately consistent with (60), where P (xm, tn) and P (xm, tn + τ) are
calculated from (47).
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1.2.5 Position and time are continuous

We consider now the limit a→ 0 in the master equation (48) or (66). These
two equations are similar, with the only difference that (66) is for the averaged
over two succesive time steps probability distribution. We can rewrite (48)
as

∂P (xn, t)

∂t
= a2 w+ + w−

2

P (xn + a, t)− 2P (xn, t) + P (xn − a, t)
a2

− a (w+ − w−)
P (xn + a, t)− P (xn − a, t)

2a
. (67)

Considering the probability density p(x, t) = P (x, t)/a as a continous func-
tion of coordinate x and taking the limit a → 0, we obtain from (67) the
drift–diffusion equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
− vdrift

∂p(x, t)

∂x
(68)

with the diffusion coefficient D and drift coefficient vdrift given by

D =
a2

2

(
w+ + w−

)
(69)

vdrift = a (w+ − w−) . (70)

To get this result, the following relations have been used

lim
a→0

p(x+ a, t)− p(x− a, t)
2a

=
∂p(x, t)

∂x
(71)

lim
a→0

p(x+ a, t)− 2p(x, t) + p(x− a, t)
a2

=
∂2p(x, t)

∂x2
. (72)

To solve (68) with the initial condition p(x, 0) = δ(x−x0), we use the Fourier
transformation

p̃(k, t) =

L∫
0

p(x, t)eikxdx (73)

p(x, t) =
1

L

∑
k

p̃(k, t)e−ikxdk , (74)

where k = 2πl/L with l = 0,±1,±2, . . . The Fourier–transformed drift–
diffusion equation reads

∂p̃(k, t)

∂t
= (−Dk2 + ik vdrift) p̃(k, t) . (75)
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The solution is
p̃(k, t) = p̃(k, 0) e−λkt , (76)

where the complex rate parameter λk is

λk = λ′k − iλ′′k (77)

with

λ′k = Dk2 (78)

λ′′k = k vdrift . (79)

Using the initial condition p(x, 0) = δ(x− x0), we obtain p̃(k, 0) = eikx0 and
thus

p̃(k, t) = e−λkt+ikx0 . (80)

The solution in the coordinate space

p(x, t) =
1

L

∑
k

e−(λ′k−iλ
′′
k)te−ik(x−x0) (81)

is obtained via the transformation (74). In can be written in a real form as

p(x, t) =
1

L

∑
k

e−λ
′
kt
(

cos(λ′′kt) cos(k[x− x0])

+ sin(λ′′kt) sin(k[x− x0])
)
. (82)

1.2.6 Transformation from discrete to continuos coordinate in the
solution

The solution (82) can be obtained from that one (59) with discrete coordinate
xn in a certain limit, where this solution is quasi–continuous (it holds for
large w+t and w−t) and therefore only small–k contribution is relevant, if the
summation interval in (59) is made more symmetric around k = 0 (otherwise
the vicinity of k = 2π is also important). For this purpose, first we shift the
range of l for k = 2πl/L in (59) by −[M/2]. In the continuum limit a → 0,
where we have M = L/a→∞, this yields k = 2πl/L with l = 0,±1,±2, . . .
Further on, we expand λ′k in (57) and λ′′k in (58) in a Taylor series around
k = 0, which yields λ′k and λ′′k consistent with (78) and (79), i. e.,

λ′k = (w+ + w−)(1− cos(ka)) ≈ (w+ + w−)
(ka)2

2
= Dk2 (83)

λ′′k = (w+ − w−) sin(ka) ≈ (w+ − w−) ka = k vdrift . (84)
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Dividing both sides of (59) by a (it yields P (x, t)→ p(x, t) and 1/M → 1/L),
and applying the considered here shift of k values and the approximations
for λ′k and λ′′k, we obtain the continuum solution (82).

1.2.7 What do we need for traffic flow?

Discrete stochastic model of Ornstein-Uhlenbeck type with ’staying together
parameter’ γ, drift or speed v, diffusion or stochasticity D

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) + γ

∂

∂x
(xp(x, t)) +D

∂2

∂x2
p(x, t) (85)

1.2.8 Fourier transforms in the case of discrete coordinates with
finite period L

At any given time moment tn we have

P̃ (k, tn) =
M−1∑
m=0

P (xm, tn)eikxm (86)

P (xm, tn) =
1

M

∑
k

P̃ (k, tn)e−ikxm , (87)

where k = 2π`/L with ` = 0, 1, 2, . . . ,M − 1 are the set of discrete wave
vectors and xm = m`/M with m = 0, 1, 2, . . . ,M − 1 are the discrete coor-
dinates. To prove (check) these relations, first we insert (87) into (86). It
yields

P̃ (k, tn) =
M−1∑
m=0

(
1

M

∑
q

P̃ (q, tn)e−iqxm

)
eikxm

=
1

M

∑
q

P̃ (q, tn)
M−1∑
m=0

eixm(k−q) =
∑
q

P̃ (q, tn) δk,q

= P̃ (k, tn) . (88)

Here the orthoganality relation

M−1∑
m=0

eixm(k−q) =
M−1∑
m=0

e2πim(`−`′)/M = M δ`−`′,0 (89)
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for k = 2π`/L and q = 2π`′/L has been used.

Now we insert (86) into (87). It yields

P (xm, tn) =
1

M

∑
k

(
M−1∑
n=0

P (xn, tn)eikxn

)
e−ikxm

=
1

M

M−1∑
n=0

P (xn, tn)
∑
k

eik(xn−xm)

=
1

M

M−1∑
n=0

P (xn, tn)Mδxn,xm = P (xm, tn) , (90)

using again the orthogonality of the wave functions eikxm .

1.2.9 The limit L→∞ for discrete coordinates

To take this limit, it is convenient to write (86) as

P̃ (k, tn) =

M−1−[M/2]∑
m=−[M/2]

P (xm, tn)eikxm , (91)

shifting the coordinate system by −[M/2], where [M/2] is the integer part of
M/2. In this case, we obtain all possible coordinates xm ranging from −∞
to ∞ at M →∞. Further on, we rewrite (87) as

P (xm, tn) =
1

M∆k

∑
k

P̃ (k, tn)e−ikxm∆k , (92)

where ∆k = 2π/L is the distance between points in the k–space, and then

change the variables q = k L/M , P̂ (q, tn) = P̃ (k, tn). We consider the limit
L → ∞ at a given lattice constant a = L/M , i. e., the limit M → ∞ or
∆q = 2π/M → 0. In this case we obtain

P (xm, tn) = lim
∆q→0

1

M∆q

∑
q

P̂ (q, tn)e−iq (M/L)xm∆q

=
1

2π

2π∫
0

P̂ (q, tn)e−iqmdq =
1

2π

π∫
−π

P̂ (q, tn)e−iqmdq . (93)
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In the latter transformation, the periodicity relation P̃ (k + 2πM/L, tn) =

P̃ (k, tn), i. e., P̂ (q + 2π, tn) = P̂ (q, tn) has been used. Changing now the no-

tations in such a way that P̃ (k, tn) again is the Fourier transform of P (xm, tn),
we have

P̃ (k, tn) =
∞∑

m=−∞

P (xm, tn)eikm (94)

P (xm, tn) =
1

2π

π∫
−π

P̃ (k, tn)e−ikmdk . (95)

1.2.10 Continuum limit for an infinite L and discrete time

Consider now the continuum limit in (94) and (95), where the lattice constant
a goes to zero. One has to take into account that in the model with discrete
time the random walker always jumps from an odd to an even lattice site or
vice versa at each time step. According to this, we first rewrite (94) as

P̃ (k, tn) =
1

∆x

∞∑
m=−∞

P (xm, tn)eikm∆x , (96)

where ∆x = 2a is the distance between lattice sites of an odd or an even
sublattice, on which P (xm, tn) has nonzero values. Furter on, we introduce
the probability density p(x, tn) = P (x, tn)/∆x = P (x, tn)/(2a) and rescaled
wave vector q = k/a. Taking into account that xm = m/a and denoting

p̃(q, tn) = P̃ (k, tn), we obtain in the continuum limit

p̃(q, tn) = lim
∆x→0

(
∞∑

m=−∞

(P (xm, tn)/∆x)eiqxm

)
=

∞∫
−∞

p(x, tn)eiqxdx(97)

p(x, tn) = lim
a→0

 1

2a

1

2π

π/a∫
−π/a

p̃(q, tn)e−iqxdq · a


=

1

4π

∞∫
−∞

p̃(q, tn)e−iqxdq . (98)
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Changing the notations in such a way that p̃(k, tn) is the Fourier transform
of p(x, tn), we have

p̃(k, tn) =

∞∫
−∞

p(x, tn)eikxdx (99)

p(x, tn) =
1

4π

∞∫
−∞

p̃(k, tn)e−ikxdk . (100)

1.2.11 Continuum limit for a finite L and discrete time

We consider the continuum limit a→ 0 at a given time moment, taking again
into account that the random walker always jumps from an odd to an even
lattice site or vice versa at each time step. In this case, Eq. (86) gives us

P̃ (k, tn) = lim
∆x→∞

(
1

∆x

M−1∑
m=0

P (xm, tn)eikxm∆x

)
=

L∫
0

p(x, tn)eikxdx . (101)

Here ∆x = 2a = 2L/M is the distance between lattice sites of an odd
or an even sublattice, on which P (xm, tn) has nonzero values, and p(x, tn) =
P (x, tn)/∆x = P (x, tn)M/(2L). For the sum over k = 2π`/L in (87), we shift
` by −[M/2]. It is correct for any given M owing to the periodicity property

P̃ (k, tn) = P̃ (2πM/L+k, tn). Such a choice of ` interval is appropriate for the
limit case M →∞ or a→ 0, since one can expect that the main contribution
comes from the terms with finite ` values (for the initial asymmetric choice,
terms with finite index ` and infinite at M → ∞ index M − ` are equally
important). In such a way, in this limit case we obtain

p(x, tn) =
1

2L

∑
k

P̃ (k, tn)e−ikx , (102)

where k = 2π`/L with ` = 0,±1,±2, . . . Changing the notations in such a
way that p̃(k, tn) is the Fourier transform of p(x, tn), we have

p̃(k, tn) =

L∫
0

p(x, tn)eikxdx (103)

p(x, tn) =
1

2L

∑
k

p̃(k, tn)e−ikx . (104)

21



1.2.12 The limit L→∞ in the case of continuous coordinate and
discrete time

To take the limit L → ∞ in (103) and (104) first we shift the coordinate
system by −L/2 to ensure that all possible values of the coordinates ranging
from −∞ to ∞ are obtained at L→∞. Then we rewrite (104) as

p(x, tn) =
1

∆k

1

2L

∑
k

p̃(k, tn)e−ikx∆k , (105)

where ∆k = 2π/L is the distance between points in the k–space. In the limit
L→∞ we have ∆k → 0, and the sum over k is replaced by the integral. It
finally yields

p̃(k, tn) =

∞∫
−∞

p(x, tn)eikxdx (106)

p(x, tn) =
1

4π

∞∫
−∞

p̃(k, tn)e−ikxdk . (107)

These equations are consistent with (99) and (100).

1.3 Tasks for students: Projects

1.3.1 Random walk with discrete position and time for natural
boundary conditions

Ludwig Scheibe

Perform Monte Carlo (MC) simulations for a random walk on an infinite
line with discrete positions xm = am, m = 0,±1,±2, . . . and discrete time
tn = τn, n = 0, 1, 2, . . ., starting at x0 = 0. Make the transformation to di-
mensionless coordinates xm/a = m and dimensionless time tn/τ = n. At each
time step the random walker jumps forwards (m→ m+ 1) with probability
p or backwards (m → m − 1) with probability q, where p + q = 1. Perform
MC simulations for several p values, including the symmetric case p = 1/2
and the asymmetric case p 6= 1/2, and estimate the probability distribution
P (m,n) to be at a position m after n time steps for different n values and
compare the results with the theoretical Binomial distribution (17).
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1.3.2 Random walk with discrete position and continuous time
for natural boundary conditions

Julius Zimmermann

Consider the master equation (48), describing a random walk on an infi-
nite line with discrete positions xm = ma, m = 0,±1,±2, . . . and continuous
time t. Find the probability distribution P (xm, t) at different time moments
t for several sets of constant transition rates w+ and w− by solving the ma-
ster equation via simulation of stochastic trajectories, starting at x0 = 0.
Compare the results with the analytical solution (59) for large M → ∞ (or
taking aM larger than the difference between the largest and the smallest
coordinate reached in the simulations).

1.3.3 Random walk with continuous position and time for natural
boundary conditions

Kai Wardelmann
Heinrich Behle

Consider the Fokker–Planck equation (68), describing a random walk on
an infinite line with continuous coordinate x and time t. Find the probability
density p(x, t) by solving numerically (68) with the initial condition p(x, t =
0) = δ(x−x0) for different sets of diffusion and drift coefficients, D and vdrift,
and compare the results with the known analytical solution in the form of
the Gaussian distribution

p(x, t) =
1√

4πDt
exp

(
−(x− x0 − vdriftt)

2

4Dt

)
. (108)

1.3.4 Random walk on a ring with discrete position and time

Nicolas Künzel
Sören Lobback

Perform Monte Carlo (MC) simulations for a random walk on a ring of
length L (periodic boundary conditions) with discrete positions xm = am,
m = 0, 1, 2, . . . ,M − 1, and discrete time tn = τn, n = 0, 1, 2, . . ., starting at
x0 = 0. At each time step the random walker jumps forwards (xm → xm +a)
with probability p or backwards (xm → xm−a) with probability q, where p+
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q = 1. Perform MC simulations for several p values, including the symmetric
case p = 1/2 and the asymmetric case p 6= 1/2, and estimate the probability
distribution P (xm, tn) to be at a position xm at a time tn for different n
values and compare the results with the theoretical distribution (47).

1.3.5 Random walk on a ring with discrete position and conti-
nuous time

Helge Dobbertin

Consider the master equation (48), describing a random walk on a ring
of length L (periodic boundary conditions) with discrete positions xm =
ma, m = 0, 1, 2, . . . ,M − 1 and continuous time t. Find the probability
distribution P (xm, t) at different time moments t for several sets of constant
transition rates w+ and w− by solving the master equation via simulation
of stochastic trajectories, starting at x0 = 0. Compare the results with the
analytical solution (59).

1.3.6 Random walk on a ring with continuous position and time

Björn Thorben Kruse
Philipp Henning

Consider the Fokker–Planck equation (68), describing a random walk on
a ring of length L (periodic boundary conditions) with continuous coordinate
x and time t. Find the probability density p(x, t) by solving numerically (68)
with the initial condition p(x, t = 0) = δ(x − x0) for different sets of dif-
fusion and drift coefficients, D and vdrift, and compare the results with the
theoretical distribution (82).

1.3.7 Comparison between the random walk on a ring for discrete
and continuos coordinates, time being continuous

Tobias Deffge

Consider a random walk on a ring with continuous time. Compare the
theoretical probability density (82) for the continuous–coordinate model with
P (xm, t)/a, where P (xm, t) is the solution (59) of the model with discrete
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coordinate xm = am. Choose the transition rates w+ and w− consistent
with (69) and (70) and consider the limit case, where a is very small for
given finite values D and vdrift.

1.3.8 Comparison between the random walk on a ring for discrete
and continuous time, position being discrete

Hannes Wernicke

Consider a random walk on a ring with discrete positions xm = ma,
m = 0, 1, 2, . . . ,M−1 and discrete time tn = τn, n = 0, 1, 2, . . . and calculate
the averaged over two succesive time steps probability P̄ (xm, tn) given by (60)
and (47) for different p and q (τ and a can be fixed, e. g., set to unity).
Compare the result for large n with the solution of the continuous–time
model (master equation) given by (59) at t = τn, w+ = p/τ and w− = q/τ .
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