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Abstract. Power-law distributions and other skew distributions, observed in various
models and real systems, are considered. A model, describing evolving systems with
increasing number of elements, is considered to study the distribution over element
sizes. Stationary power-law distributions are found. Certain non-stationary skew dis-
tributions are obtained and analyzed, based on exact solutions and numerical simula-
tions.
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1 Introduction

Power laws are observed in many systems. Particularly, one has to note the critical phe-
nomena in interacting many-particle systems, which are associated with cooperative fluc-
tuations of a large number of microscopic degrees of freedom. The singularities of vari-
ous quantities in vicinity of the phase transition point are described by the critical expo-
nents. It has been rigorously shown for a class of exactly solved models [1–3], which are
mainly the two-dimensional lattice models. For three-dimensional systems, exact results
are difficult to obtain and approximate methods are usually used. A review of numerical
results, as well as of the applied here standard perturbative renormalization group (RG)
methods can be found, e.g., in [4]. An alternative approach has been proposed in [5].
There are also many textbooks devoted to this topic, e.g., [6–9]. A general review of
critical phenomena in various systems can be found, e.g., in [10]. Recently, the role of
quantum fluctuations in critical phenomena has been reviewed and discussed in [11].
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Goldstone mode power-law singularities are observed also below the critical temper-
ature in some systems, where the order parameter is an n-component vector with n> 1
(see, e.g., [12–17]). These systems are spin models having O(n) rotational symmetry in
zero external field. This is an interesting example of power law behavior, exhibited by
the transverse and longitudinal correlation functions in the ordered phase. Moreover,
according to the recent Monte Carlo (MC) simulation results [18–20], it is very plausible
that this behavior is described by nontrivial exponents, as predicted in [17].

For a general review, one has to mention that phase transitions described by power
laws and critical exponents are observed in variety of systems, such as social, economical,
biological systems, as well as vehicular traffic flow, which are often referred in literature
as non-physical systems. In particular, traffic flow is a driven one-dimensional system in
which, unlike to one-dimensional equilibrium systems, phase transitions are observed.
Formation of a car cluster on the road is analogous to aggregation phenomena in many
physical systems [21]. The widely used approach in description of the vehicular traffic, as
well as the traffic in biological systems such as ants, is the simulation by cellular automata
models. One can mention here the famous Nagel-Schreckenberg model [22], which has
numerous extensions, e.g., [23–29]. A good review about this topic can be found in [30].
Stochastic fluctuations play an important role here. A new approach to this problem, em-
phasizing the role of the stochasticity, has been introduced in [31]. The master equation
is used here to describe the jam formation on a road as a stochastic one-step process, in
which the size of a car cluster is a stochastic variable. The results of this approach have
been summarized in the review paper [32], as well as in the recent textbook [33]. The
critical behavior, found in a simple traffic flow model considered in [32], is described by
the mean-field exponent β=1/2 for the order parameter (see p. 75 in [32]).

The power laws in critical phenomena have been discussed in [34] in a general context
of many other examples, where the power-law distributions emerge. A distinguishing
feature of the critical phenomena is the existence of certain length scale, which diverges
at specially chosen parameters, i.e., at the critical point. It results in a scale-free or power-
law distribution. In some cases, however, no fine tuning of parameters is necessary to
observe the critical phenomena. It refers to systems exhibiting the self-organized critical-
ity. Any such system adjusts itself to the critical point due to some dynamical process.
The percolation on square lattice have been discussed in [34] as an example of critical
phenomena and the forest fire model-as an example of the self-organized criticality. Spin
systems with global rotational symmetry could be added here as a different example of
the power-law behavior at a divergent length scale. Namely, the correlation length in
such systems is divergent at vanishing external field not only at the critical temperature,
but also below it. It results in the already mentioned here power-law Goldstone mode
singularities.

Apart from the appearance of the divergent length scale, there are also other mecha-
nisms how the power laws emerge. Many examples have been reviewed and discussed
in [10, 34–37] pointing out the ubiquitous observation of power law distributions in na-
ture. A tool for analyzing power law distributed empirical data in presented in [36]. A
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set of mechanisms for power laws can be found in [10] based on self-organized criticality
like damage and fracture of materials as well as multiplicative recurrence with stochas-
tic variables. Power laws are common patterns in nature [37] and economics (known as
Pareto distributions [34, 35]). The underlying cause seems to be stochasticity. We have
addressed this question in Section 2 by considering in detail certain model of evolving
system.

2 Emergence of power-law distribution and other skew

distributions in evolving systems

Power-law distribution can be considered as a particular case of the so called skew dis-
tributions. Examples of skew distributions are considered in various papers in literature,
e.g., Zipf’s law (power law) in rank-size distribution of cities [38] and log-normal distri-
bution as a long-tailed duration distribution for disability in aged people [39]. A class of
non-Gaussian distributions with power-law tails has been considered in [40]. In Chapter
6 of [10], the stretched exponential function family and its generation is reviewed as inter-
mediate between thin (like Gaussian) and fat tail (like power law) distributions. Certain
extreme deviation mechanism has been discussed in [41], which can explain the appear-
ance of stretched-exponential distribution in a number of physical and other systems,
exhibiting anomalous probability distribution functions and relaxation behaviors. Exam-
ples are anomalous relaxations in glasses and velocity distribution in turbulent flow.

A generalized family of distributions, including the Pareto power law distribution
as well as the Weibull distribution, has been considered in [42, 43]. It has been shown
here that the power law family is nested into the Weibull family as certain limit case (see
Eqs. (1) to (8) in [43]).

In [44] (see also comment on this paper [45]) some interesting ideas are developed
how skew distributions such as power law, log-normal and Weibull distributions emerge
in general evolving systems and what makes the difference between them. According
to [45], however, no correct answers to these fundamental questions have been found
in [44]. Therefore, we have reconsidered this problem and have found an example, where
the Weibull distribution really emerges.

We consider certain evolving system consisting of N elements, introduced already
in [45]. Therefore, we will repeat some basic definitions and relations of [45], which
are necessary for the actual extended study. Each element of the evolving system has
certain size, which is a discrete stochastic variable taking one of the values xn, where
n= 1,2,3, etc. The size of each element can increase from xn to xn+1 with the transition
rate w(n). The number of elements N=N(t) also increases with time, i.e., a new element
of the minimal size x1 is generated with certain rate W(N). Assuming W(N)= rN, the
probability P(N,t) of having N elements at time t is given by the master equation

∂P(N,t)

∂t
= r(N−1)P(N−1,t)−rNP(N,t). (2.1)
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We consider a system having N(t=0)=N(0) elements at the beginning. Thus, the initial
condition reads

P(N,t=0)=δN,N(0). (2.2)

The equation for the mean number of elements 〈N〉(t)=∑N NP(N,t) is obtained via
multiplying both sides of (2.1) by N and summing up from N(0) to infinity. It yields

d〈N〉

dt
= r〈N〉, (2.3)

which gives the solution
〈N〉(t)=N(0)ert . (2.4)

Let P(N1,N2,··· ;t) be the probability of having N1 elements of size x1, N2 elements of size
x2 and so on, at time t. The time evolution of our system can be described by the master
equation for P(N1,N2,··· ;t) in an infinitely-dimensional space of stochastic variables Nn.
A quantity of interest is the probability p(n,t) that a randomly chosen element has size
xn at time t.

In the thermodynamic limit N(0)→∞, considered further on, the relative fluctuations
of Nn around their mean values 〈Nn〉 are vanishingly small and we have

p(n,t)=
〈Nn〉(t)

〈N〉(t)
. (2.5)

In this case, the mean numbers of elements obey simple balance equations

d〈Nn〉

dt
=w(n−1)〈Nn−1〉−w(n)〈Nn〉 : n≥2, (2.6a)

d〈N1〉

dt
= r〈N〉−w(1)〈N1〉. (2.6b)

From (2.3) and (2.5)-(2.6b) we obtain

∂p(n,t)

dt
=w(n−1)p(n−1,t)−[w(n)+r]p(n,t) : n≥2, (2.7a)

∂p(1,t)

dt
= r−[w(1)+r]p(1,t). (2.7b)

These are the basic relations, introduced already in [45].
In the following, we will consider two particular examples. For w(n)=λ, the station-

ary solution of (2.7a)-(2.7b) is an exponential function

pst(n)=
r

λ

(

1+
r

λ

)−n
=

r

λ
e−γn with γ= ln

(

1+
r

λ

)

. (2.8)

If xn =(1+b)n−1 and w(n)=λ, then Eq. (2.7a) for p(n,t)≡ p(xn ,t) becomes

∂p(xn,t)

∂t
=−(r+λ)p(xn ,t)+λp(xn−δn,t) (2.9)
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with δn = xnb/(1+b). This equation is similar to that one obtained in [44] (cf. Eq. (7)
in [44]) and discussed also in [45]. The stationary solution pst(xn) is a power-law

pst(xn)∝ x−α
n (2.10)

with α= ln(1+r/λ)/ln(1+b).
Another example is xn = n and w(n) = λn. One should note the similarity of this

growth mechanism with the auto-catalysis in chemical reactions in presence of birth of
new entrants [46–48] as well as with the mechanism of fault growth considered in [49].
In this case we obtain

∂p(xn,t)

∂t
=−(r+λxn)p(xn,t)+λ(xn−1)p(xn−1,t). (2.11)

At large n or large xn, it is expected that the probability p(xn,t) changes almost contin-
uously with xn, so that p(xn,t) can be approximated by a continuous function p(x,t),
which has the meaning of the probability density. For large xn, the stationary solution
of (2.11) is a power-law

pst(xn)∝ x−α
n at xn →∞ (2.12)

with α=1+r/λ.
Similarly as in models of aggregation with injection [50, 51], the size distribution is

cut-off at xn ∼Λ(t), where the upper cut-off parameter Λ(t) diverges at t→∞. The non-
stationary solution converges to the stationary (power-law) one at r>0 and t→∞ in the
sense that the probability distribution becomes time-independent for x≪Λ(t), whereas
r=0 is a special case where limt→∞ p(xn,t)=0 holds for any fixed n. Indeed, the size of
each element can only increase with time and no new elements appear if r=0.

The total number of elements N is conserved at r=0 and these elements evolve inde-
pendently of each other. Hence, p(n,t) in this case can be interpreted as the probability
to have certain size xn at time t for a system consisting of one element.

Assuming the initial condition p(n,t = 0) = δn,1, the exact solution of (2.7a)-(2.7b) at
r=0 is

p(n,t)=
(λt)n−1

(n−1)!
e−λt (2.13)

for w(n)=λ and

p(n,t)= e−λt
(

1−e−λt
)n−1

(2.14)

for w(n) = λn, as it can be easily verified by a direct substitution. Inserting n−1 =
lnxn/ln(1+b) in (2.13), we obtain the solution for the case xn = (1+b)n−1 in terms of
the element sizes xn

p(xn,t)=
(λt)lnxn/ln(1+b)

Γ(1+lnxn/ln(1+b))
e−λt. (2.15)

Continuum description xn → x is valid here for b→0 and large n around the distribution
maximum, i.e., for n≈λt→∞. Besides, the probability density is ∝ p(x,t)/x in this case,
since the density of points is varied as 1/x.
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Figure 1: Probability distributions for w(n)=λ= 1s−1 at four different values of r (in s−1): r= 0, r= 0.001,
r=0.01, r=0.1 (r value increases form left to right and top to bottom). Dashed lines represent calculated results
by solving Eqs. (2.7a)-(2.7b) numerically at different time moments t. Solid line shows stationary solution given
by Eq. (2.8).

The probability distribution can be obtained numerically by simulating stochastic tra-
jectories, corresponding to the master equations (2.7a)-(2.7b). The results for w(n)=λ=1
at four different values of r are shown and compared with the stationary distribution (2.8)
in Fig. 1.

At r=0 (top left), the probability distribution is represented by a moving maximum at
n≈λt, as consistent with (2.13). This maximum is also well seen at small positive values
of r (r = 0.001;0.01). However, it becomes less distinct with increasing of r. Generally,
the distribution is cut-off at n values, which are somewhat larger than λt. At long times,
remarkably smaller than λt values of n and positive r, the time-dependent distribution
is well consistent with the exponential stationary distribution (2.8), which is power-law
distribution (2.10) depending on size xn.

In the other example, where xn = n and w(n) = λn, Eq. (2.14) yields the asymptotic
solution at r=0

p(xn,t)= e−λte
− xn

eλt =
1

xn

xn

eλt
e
− xn

eλt (2.16)

valid for xn ∼ eλt →∞. It is obtained using the identity limz→∞(1+a/z)z = ea. According
to the last equality in (2.16), this exponential distribution is a special case of the Weibull
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Figure 2: Probability distributions for w(n)= nλ with λ= 1 s−1 at four different values of r (in s−1): r= 0.1,
r=0.5, r=1, r=2 (r value increases form left to right, top to bottom). Dashed lines represent calculated results
by solving Eq. (2.11) numerically at different time moments t. Solid line represents power law solution from
Eq. (2.12) and proportionality constant was determined by fitting numerical results of Eq. (2.11) at large n for
maximal calculated time, because power law solution should be valid at large value of n and long time t.

distribution

pWeibull(x,t)≡ f (x;η,γ)=
γ

x

( x

η

)γ
e
−( x

η )
γ

(2.17)

with the scale parameter η = eλt and the shape parameter γ= 1. The simulation results
for four positive values of r are shown in Fig. 2.

The simulation results confirm the expected convergence to the stationary power-law
distribution (2.12) for large xn =n and long times t.

The last term in (2.11) can be evaluated approximately by using the Taylor expansion
of yp(y,t) around y = x. In the linear approximation at r = 0, it leads to a continuous
equation

∂p(x,t)

∂t
=−λp(x,t)−λx

∂p(x,t)

∂x
(2.18)

with p(x,t) being the probability density. This equation is valid for large x in certain
cases, where the higher order expansion terms are small. It satisfies the conservation law
of total probability, as it can be easily verified performing the integration over x by parts.
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It has a solution

p(x,t)=
1

x
F
( x

η(t)

)

(2.19)

with the shape function F(z) and the scale parameter η(t)=η0eλt. Here F(z) is an arbi-
trary function, which has continuous first derivative. The Weibull distribution (2.17) is a
particular case of (2.19). Hence, if we choose the initial condition corresponding to (2.19)
at t=0, then this equation represents the solution also at t>0. This solution has a simple
interpretation: it corresponds to the growth of the size x of each element according to the
deterministic approximation dx/dt=λx. The second-order derivative neglected in (2.18)
is responsible for the diffusion effect, which can change the shape of the distribution.
Eq. (2.18) is a good approximation within a finite time interval for the initial distribution
in the form of (2.19) with large η0. In this case, the second- and higher-order derivatives,
neglected in (2.18) are small for any x∼η0, i.e., the diffusion effect is small within not too
long time interval. Consequently, any skew distribution of the general form (2.19) can
be observed as a transient behavior at appropriate initial distribution of element sizes,
provided that no new elements are generated, i.e., r=0.

3 Conclusions

Below we summarize the main points of this paper:

1. The emergence of stationary power-law distributions of element sizes, as well as
of non-stationary skew distributions, such as the Weibull distribution, has been
considered in certain evolving systems, where the mean total number of elements
〈N〉 grows exponentially with time t as 〈N〉(t)=N(0)ert and the size of each element
also grows with time (Section 2).

2. Our exact results for the model with no particle injection (r=0) show that in this spe-
cial case, where the total number of elements is fixed, the non-stationary long-time
solutions can be different skew distributions given by Eqs. (2.15) and (2.16). The
solution (2.16) is a particular case of the Weibull distribution. Our analysis shows
that transient distributions of a general approximate form (2.19) can be also ob-
served. The analytical solutions have been compared with the results of numerical
simulations of the corresponding master equations, providing also the probability
distributions for the general case of r≥ 0. A convergence of a time-dependent so-
lution to the stationary (power-law) one is observed for large element sizes at r>0
and time t→∞.
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