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An analogy of the Fokker–Planck equation (FPE) with the Schrödinger equation allows us to use quantum
mechanics technique to find the analytical solution of the FPE in a number of cases. However, previous
studies have been limited to the Schrödinger potential with discrete eigenvalue spectrum. Here we will show
how this approach can be applied also for mixed eigenvalue spectrum with bounded and free states. We solve
the FPE with boundaries located at x = ±L/2 and take the limit L→∞, considering examples with constant
Schrödinger potential and with Pöschl-Teller potential. An oversimplified approach has been earlier proposed
by M.T. Araujo and E. Drigo Filho. A detailed investigation of the two examples shows that the correct solution,
obtained in this paper, is consistent with the expected Fokker–Planck dynamics.
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1. Introduction

The one–dimensional Fokker–Planck equation (FPE) for the probability density
p(x, t), depending on variable x and time t, assumes the generic form [1–7]

∂p(x, t)

∂t
= − ∂

∂x
{f(x, t)p(x, t)}+

∂2

∂x2

{
D(x, t)

2
p(x, t)

}
. (1.1)

Here the drift coefficient or force f(x, t) and the diffusion coefficient D(x, t) depend on x and t
in general. The Fokker–Planck equation is related to the Smoluchowski equation. Starting from
pioneering works by Marian Smoluchowski [1, 2], these equations have been historically used to
describe the Brownian–like motion of particles. The Smoluchowski equation describes the high–
friction limit, whereas the Fokker–Planck equation refers to the general case.

The FPE provides a very useful tool for modeling a wide variety of stochastic phenomena arising
in physics, chemistry, biology, finance, traffic flow, etc. [3–6]. Given the importance of the Fokker–
Planck equation, different analytical and numerical methods have been proposed for its solution.
As it is well known, the stationary solution of FPE can be given in a closed form if the condition
of detailed balance holds. The study of the time–dependent solution is a much more complicated
problem. The FPE (1.1) with a general time–dependence and a special x–dependence of the drift
and diffusion coefficients has been studied analytically in [7] using Lie algebra. This method is
applicable when the Fokker–Planck equation has certain algebraic structure, allowing to apply the
Lie algebra and the Wei–Norman theorem. Generally, there are few exactly solvable cases. A simple
such example is a system with constant diffusion coefficient and harmonic interaction of the form
f(x) = −dV (x)/dx with harmonic potential V (x) ∼ x2. The case with double–well potential is
already quite non-trivial and requires a numerical approach [8].
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The known relation between the Fokker–Planck equation and the Schrödinger equation can
also be used. This approach allows us to apply the well known methods of quantum mechanics. In
particular, analytical solutions can be found in the cases, where the eigenvalues and eigenfunctions
for the considered Schrödinger potential are known. For a general Schrödinger potential, numerical
treatments used in quantum mechanics, such as the Crank–Nicolson time propagation with implicit
Numerov’s method for second order derivatives [9], are very useful. To apply it to Schrödinger–type
equation, we just need to replace the real time step ∆t by an imaginary time step ∆t → −i∆t.
In quantum mechanics this is called imaginary time propagation and is used for calculation of
ground states and also excited states. The analytical studies of mapping the FPE to Schrödinger
equation has been up to now restricted to a treatment of discrete eigenstates. An attempt has been
made in [10] to extend this approach to potentials with mixed (discrete and continuous) eigenvalue
spectrum. However, we have found a basic error in this treatment, indicated explicitly at the end
Sec. 4.3.

The aim of our work is to show how the problem with mixed eigenvalue spectrum can be treated
correctly. We will show this in two examples: one with constant Schrödinger potential and another
– with Pöschl–Teller potential. The same example has been incorrectly treated in [10]. To avoid
any confusion one has to note that the Pöschl–Teller potential is called Rosen–Morse potential
in [10].

2. Solution of FPE with constant diffusion coefficient

We start our consideration with the one–dimensional Fokker–Planck equation (1.1) in the fol-
lowing formulation

∂p(x, t)

∂t
= − ∂

∂x
[f(x)p(x, t)] +

D

2

∂2p(x, t)

∂x2
(2.1)

for the probability density distribution p(x, t), depending on variable x and time t. Here f(x) is
the nonlinear force and D is the diffusion coefficient, which is now assumed to be constant. We
consider natural boundary conditions

lim
x→±∞

p(x, t) = lim
x→±∞

∂p(x, t)

∂x
= 0 (2.2)

and take the most frequently used initial condition

p(x, t = 0) = δ(x− x0) (2.3)

in the form of the δ–function. This FPE (2.1) can be transformed into an equation of Schrödinger
type (see Sec. 2.2). Unfortunately, the well known relation (see Eq. (2.25)), derived for the dis-
crete eigenvalue spectrum, cannot be applied if this equation has continuous or mixed eigenvalue
spectrum. To overcome this problem, we follow a properly corrected treatment of [10]. Namely, we
solve the FPE with boundaries located at x = ±L/2 and then take the limit L → ∞ (see Sec.
2.3). This approach is applied in quantum mechanics to describe unbounded states. To keep closer
touch with quantum mechanics, here we will use the boundary conditions p(x = ±L/2, t) = 0,
further called absorbing boundaries.

2.1. The stationary solution

The stationary solution pst(x) is the long–time limit of p(x, t) at t → ∞, which follows from
the equation

0 =
d

dx
[f(x)pst(x)]− D

2

d2pst(x)

dx2
. (2.4)

The force f(x) can be expressed in terms of the potential V (x) via f(x) = −dV (x)/dx. It yields

0 = − d

dx

[
dV (x)

dx
pst(x) +

D

2

dpst(x)

dx

]
. (2.5)
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Due to the natural boundary conditions, we have zero flux

jst(x) ≡ −dV (x)

dx
pst(x)− D

2

dpst(x)

dx
= C with C = 0 . (2.6)

Thus, we have

dpst(x)

dx
= − 2

D

dV (x)

dx
pst(x) (2.7)

dpst(x)

pst(x)
= − 2

D
dV (x) , (2.8)

which yields the stationary solution

pst(x) = N−1Y (x) , (2.9)

where
Y (x) ≡ exp

[
− 2

D
V (x)

]
(2.10)

has meaning of the unnormalized stationary solution only in case of natural boundaries and N is
the normalization constant

N =

+∞∫
−∞

dx exp

[
− 2

D
V (x)

]
. (2.11)

This function Y (x) is further used to construct the time–dependent solution.

2.2. The time–dependent solution with discrete eigenvalues

Here we derive the time–dependent solution, starting with the transformation
p(x, t)→ q(x, t) defined by

p(x, t) = Y (x)1/2 q(x, t) ≡ exp

[
− 2

D

V (x)

2

]
q(x, t) . (2.12)

This transformation removes the first derivative in the original Fokker–Planck equation and gen-
erates the equation of Schrödinger type for the function q(x, t), i. e.,

∂q(x, t)

∂t
= −VS(x)q(x, t) +

D

2

∂2q(x, t)

∂x2
, (2.13)

where

VS(x) = −

[
1

2

d2V (x)

dx2
− 2

D

(
1

2

dV (x)

dx

)2
]
, (2.14)

is the so–called Schrödinger potential. In the case of discrete eigenvalues, we apply the superposition
ansatz

q(x, t) =

∞∑
n=0

an(t)ψn(x) . (2.15)

After inserting (2.15) into (2.13), we get the eigenvalue problem

D

2

d2ψn(x)

dx2
− VS(x)ψn(x) = −λnψn(x) (2.16)

for eigenfunctions ψn(x) and eigenvalues λn ≥ 0 with time–dependent coefficients an(t) given by

an(t) = an(0) exp (−λn t) . (2.17)
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According to this, Eq. (2.15) can be written as

q(x, t) =

∞∑
n=0

an(0)e−λn tψn(x) . (2.18)

The eigenfunctions ψn(x) are orthonormal, i. e.,

+∞∫
−∞

ψn(x)ψm(x)dx = δnm (2.19)

and satisfy the closure condition (completeness relation)

∞∑
n=0

ψn(x′)ψn(x) = δ(x− x′) . (2.20)

Eq. (2.16) can be written as a Schrödinger–type eigenvalue equation with Hermitian Hamilton
operator H:

Hψn(x) = λnψn(x) with H = −D
2

d2

dx2
+ VS(x) . (2.21)

The coefficients an(0) in (2.18) are calculated using the initial condition

p(x, t = 0) = Y (x)1/2q(x, t = 0) = δ(x− x0) . (2.22)

According to (2.18), this relation can be written as

Y (x)−1/2δ(x− x0) =

∞∑
m=0

am(0)ψm(x) . (2.23)

In the following, we multiply both sides of this equation by ψn(x) and integrate over x from −∞
to +∞. Taking into account (2.19), it yields the up to now unknown coefficients

an(0) = Y (x0)−1/2ψn(x0) . (2.24)

The final result of this calculation reads

p(x, t) =

√
Y (x)

Y (x0)

∞∑
n=0

e−λn tψn(x0)ψn(x) . (2.25)

Note that this method can also be used for other boundary conditions. The solution in the general
form of (2.25) is well known from older studies, e. g., [11] and can be found in many textbooks,
e. g., [3, 4].

2.3. The time–dependent solution with mixed eigenvalue spectrum

Consider now the problem with two absorbing boundaries located at x = ±L/2 instead of the
natural boundary conditions. In this case we have a discrete eigenvalue spectrum, and Eq. (2.25)
can be used (with summation over only those eigenfunctions which satisfy boundary conditions in
a box of length L) to calculate the probability distribution pL(x, t), i. e.,

pL(x, t) =

√
Y (x)

Y (x0)

∞∑
n=0

e−λn,L tψn,L(x0)ψn,L(x) , (2.26)

where λn,L are eigenvalues and ψn,L(x) are corresponding eigenfunctions, which fulfill the boundary
conditions. Let us split this infinite sum into two parts: for λn,L < λcon and λn,L ≥ λcon, where λcon
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is the smallest continuum eigenvalue in the case with natural boundaries. This eigenvalue spectrum
is shown schematically in Fig. 1, where the value of λcon is indicated by a horizontal dotted line,
the eigenvalues λn,L < λcon – by solid lines and the eigenvalues λn,L ≥ λcon – by dashed lines.

Let M(L) be maximal value of n for which λn,L < λcon and kn−M(L),L =
√

2
D (λn,L − λcon) for

n > M(L) and ψconkn−M(L),L
(x) = ψn,L(x) for n > M(L). Hence, we have

pL(x, t) =

√
Y (x)

Y (x0)

M(L)∑
n=0

e−λn,L tψn,L(x0)ψn,L(x)

+

√
Y (x)

Y (x0)
e−λcon t

∞∑
m=1

e−
D
2 k

2
m,L tψconkm,L(x0)ψconkm,L(x) .

(2.27)

x

VS(x)

L/2-L/2

Figure 1. A schematic view of the eigenvalue spectrum for the problem with two absorbing
boundaries at x = ±L/2. The Schrödinger potential VS(x) together with the boundaries at
x = ±L/2 is indicated by solid curve and vertical lines.

The solution with natural boundaries is the limit case L→∞

p(x, t) = lim
L→∞

pL(x, t) (2.28)

or

p(x, t) =

√
Y (x)

Y (x0)

N−1∑
n=0

e−λn tψn(x0)ψn(x)

+

√
Y (x)

Y (x0)
e−λcon t lim

L→∞

∞∑
m=1

e−
D
2 k

2
m,L tψconkm,L(x0)ψconkm,L(x) ,

(2.29)

where N = lim
L→∞

M(L) is number of bounded states in the case with natural boundaries. Since

the eigenfunctions cannot be normalized at L → ∞, it is appropriate to write Eq. (2.29) for
unnormalized eigenfunctions ψ̄conkm,L(x),

p(x, t) =

√
Y (x)

Y (x0)

N−1∑
n=0

e−λn tψn(x0)ψn(x)

+

√
Y (x)

Y (x0)
e−λcon t lim

L→∞

∞∑
m=1

e−
D
2 k

2
m,L t

N−1

∆kL︸ ︷︷ ︸
g−1(k,L)

ψ̄conkm,L(x0)ψ̄conkm,L(x)∆kL ,
(2.30)

where the normalization constant N is given by

N =

L/2∫
−L/2

dx |ψ̄conk (x)|2 (2.31)
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and the expression under infinite sum is divided and multiplied by ∆kL = km+1,L − km,L.
The infinite sum can be split in two parts: one with odd m and the other – with even m. If the

Schrödinger potential is symmetric, then one of these two parts contains only odd eigenfunctions
ψ̄ok(x), whereas the other part – only even eigenfunctions ψ̄ek(x). In the limit L → ∞, these two
sums can be represented by corresponding integrals, yielding

p(x, t) =

√
Y (x)

Y (x0)

N−1∑
n=0

e−λn tψn(x0)ψn(x)

+

√
Y (x)

Y (x0)
e−λcon t

∞∫
0

dk e−
D
2 k

2 tg−1e (k)ψ̄ek(x0)ψ̄ek(x)

+

√
Y (x)

Y (x0)
e−λcon t

∞∫
0

dk e−
D
2 k

2 tg−1o (k)ψ̄ok(x0)ψ̄ok(x) ,

(2.32)

where

ge(k) = lim
L→∞

2∆kL

L/2∫
−L/2

dx |ψ̄ek(x)|2

 (2.33)

go(k) = lim
L→∞

2∆kL

L/2∫
−L/2

dx |ψ̄ok(x)|2

 . (2.34)

This representation is useful if the eigenvalues and eigenfunctions are known.

3. The analytical solution of FPE with constant force

Let us consider a constant force term. In this case the Fokker–Planck equation (2.1) reads

∂p(x, t)

∂t
= −vdrift

∂p(x, t)

∂x
+
D

2

∂2p(x, t)

∂x2
. (3.1)

This is a drift–diffusion problem for the potential V (x) = −vdriftx normalized to V (x = 0) = 0.
No stationary solution exists for this problem, because the normalization constant N in Eq. (2.11)
diverges in this case. Nevertheless, the transformation (2.12) p(x, t) = Y (x)

1/2
q(x, t) with

Y (x) = exp

[
− 2

D

V (x)

2

]
= exp

[vdrift
D

x
]

(3.2)

can be used here to obtain an equation of Schrödinger type (2.13) with constant
Schrödinger potential

VS =
1

2D
v2drift . (3.3)

The corresponding to (2.21) stationary Schrödinger–type equation reads

d2ψn(x)

dx2
−
[
v2drift
D2

− 2

D
λn

]
ψn(x) = 0 . (3.4)

Let us now add two absorbing boundaries located at x = ±L/2, where ψ(x = ±L/2) = 0.

Only in the case of real kn =

√
2
Dλn −

v2drift
D2 > 0 Eq. (3.4) has non-trivial solutions

ψn(x) = A cos(knx) +B sin(knx) , (3.5)
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which satisfy boundary conditions. These solutions are

ψn,L(x) =


√

2
L cos (kn,Lx) if n is even√
2
L sin (kn,Lx) if n is odd

, (3.6)

where n = 0, 1, 2, . . . and
kn,L =

π

L
(n+ 1). (3.7)

According to (3.6)–(3.7), we have from (2.33) and (2.34)

ge(k) = go(k) = π . (3.8)

Taking into account that

λcon = lim
L→∞

min{λn,L} = lim
L→∞

min

{
D

2
k2n,L +

v2drift
2D

}
=
v2drift
2D

(3.9)

holds, we obtain from Eq. (2.32) the expression

p(x, t) = exp

[
1

D
vdrift(x− x0)

]
exp

[
−v

2
drift

2D
t

]

× 1

π

∞∫
0

dk e−
Dk2t

2 [cos(kx) cos(kx0) + sin(kx) sin(kx0)] .

(3.10)

Using the well known identities

cos(kx) cos(kx0) + sin(kx) sin(kx0) = cos[k(x− x0)] (3.11)

and
∞∫
0

dk e−αk
2

cos(βk) =

√
π

4α
e−

β2

4α , (3.12)

we obtain after a simplification the well known result

p(x, t) =
1√
2Dt

exp

[
− (x− x0 − vdriftt)2

2Dt

]
, (3.13)

which describes a moving and broadening Gaussian profile.

4. Fokker–Planck dynamics with Pöschl–Teller potential

Here we consider as a particular example the force

f(x) = −b tanh (αx) (4.1)

with some positive constants b and α. This corresponds to the diffusion problem in the potential

V (x) =
b

α
ln (coshαx) , (4.2)

normalized to V (x = 0) = 0.
Fig. 2 shows that this potential is actually a smoothed version of the V-shaped potential. The

corresponding Schrödinger potential in this case is

VS(x) =
b2

2D
−
(
b2

2D
+
bα

2

)
1

cosh2(αx)
. (4.3)
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Figure 2. Graphical representation of Eq. (4.2) for b = 1 and several values of parameter α.

If we compare it (see Eq. (4.4) and Fig. 3) with the well known Pöschl–Teller potential

VPT (x) = VS(x)− b2

2D
= − V0

cosh2 (αx)
, (4.4)

then we see that Eq. (4.3) represents the shifted by b2

2D Pöschl–Teller potential with V0 = b2

2D + bα
2 .

As we can see from Fig. 3, the Pöschl–Teller potential gives mixed (discrete and continuous)
eigenvalue spectrum, therefore Eq. (2.25) cannot be directly applied to solve the FPE. We have to
use (2.32).
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 0
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V
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(x
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x

V0=1.0, α=0.2
V0=1.0, α=1.0
V0=1.0, α=5.0

Figure 3. Pöschl–Teller potential (4.4) for V0 = 1 and several values of parameter α.

The eigenvalue equation (2.16) for the potential (4.3) reads

D

2

d2ψn(x)

dx2
−
[
b2

2D
−
(
b2

2D
+
bα

2

)
1

cosh2(αx)

]
ψn(x) = −λnψn(x) . (4.5)

By introducing dimensionless variables x̃ = αx, l̃ = b
Dα and λ̃n = 2λn

Dα2 − l̃2, we write (4.5) in a
dimensionless form

− d2ψn(x̃)

dx̃2
− l̃
(
l̃ + 1

) 1

cosh2 x̃
ψn(x̃) = λ̃nψn(x̃) . (4.6)

Analytical solutions for bounded as well as unbounded eigenfunctions of Eq. (4.6) are known and
can be found in [12, 13].

4.1. Bounded solutions for Pöschl–Teller potential

The Eq. (4.6) has N = max {m ∈ N | m < l̃ + 1} bounded states n = 0, 1, 2, . . . , N − 1,
where N is a natural number N = {0, 1, 2, . . .}. Here we consider the eigenfunctions with λ̃n = 0 as
unbounded, because they cannot be normalized.
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The eigenvalues can be calculated from the following equation [12]

λ̃n = −(l̃ − n)2 , for n < N ; n ∈ N . (4.7)

Note that at least one bounded state with λ̃0 = −l̃2 always exists for l̃ > 0, which corresponds to
λ0 = 0. The bounded eigenfunctions are known [12]

ψn (x̃) = cosh−l̃(x̃)×

{
Ne(n) F

(
− 1

2n,
1
2n− l̃;

1
2 ;− sinh2 x̃

)
if n is even

No(n) sinh(x̃) F
(
1
2 −

n
2 ,

n
2 + 1

2 − l̃;
3
2 ;− sinh2 x̃

)
if n is odd,

(4.8)

where F denotes hypergeometric function, which can be represented by Gaussian hypergeometric
series

F(α, β; γ; ζ) =
Γ(γ)

Γ(α)Γ(β)

∞∑
k=0

Γ(α+ k)Γ(β + k)

Γ(γ + k)

ζn

n!
. (4.9)

The normalization constants are

Ne(n) =

√
2(l̃ − n)

(l̃ − 1
2n) (n+ 1)

1

B
(
1
2 , l̃ −

1
2n
)
B
(
1
2 , 1 + 1

2n
) , (4.10)

No(n) =

√
2(l̃ − n)

l̃ − 1
2 (n+ 1)

1

B
(
3
2 , l̃ −

1
2 (n+ 1)

)
B
(
1
2 ,

1
2 (n+ 1)

) , (4.11)

where B(a, b) is the beta function B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

4.2. Unbounded solutions for Pöschl–Teller potential

The unbounded solutions have continuous eigenvalue spectrum with 0 ≤ λ̃ < ∞. Thus we
can introduce k̃ =

√
λ̃ (with k̃ = k/α). The Pöschl-Teller potential is symmetric, therefore the

eigenfunctions are even and odd functions known from [13]

ψ̄k̃,l̃ (x̃) = A · ψe
k̃,l̃

(x̃) +B · ψo
k̃,l̃

(x̃) , (4.12)

ψ̄e
k̃,l̃

(x̃) = (cosh x̃)
l̃+1

F
(
r, s;

1

2
;− sinh2 x̃

)
, (4.13)

ψo
k̃,l̃

(x̃) = (cosh x̃)
l̃+1

sinh(x̃) F
(
r +

1

2
, s+

1

2
;

3

2
;− sinh2 x̃

)
, (4.14)

where A and B are constants, and

r =
1

2
(l̃ + 1 + ik̃) , s =

1

2
(l̃ + 1− ik̃) . (4.15)

Because these are unbounded solutions, eigenfunctions cannot be normalized within x ∈ (−∞; +∞).
As we see, the eigenfunctions are rather complicated in general case. The expressions become

essentially simpler for integer values of l̃. Therefore, without loosing the general idea, we will show
the solutions of the Fokker-Planck equation for l̃ = 1 and l̃ = 2.

4.3. The solution of FPE for Pöschl–Teller potential with parameter l̃ = 1

For l̃ = 1 (which implies b = αD) we have only one bounded state with the eigenvalue λ̃0 = −1
and the eigenfunction (Eq. (4.8) for n = 0)

ψ0(x̃) =
1√

2 cosh(x̃)
. (4.16)
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The unbounded eigenfunctions (4.13) and (4.14) are

ψ̄e
k̃

(x̃) = cos(k̃x̃)− 1

k̃
tanh(x̃) sin(k̃x̃) , (4.17)

ψ̄o
k̃

(x̃) = sin(k̃x̃) +
1

k̃
tanh(x̃) cos(k̃x̃) . (4.18)

As proposed in Sec. 2, we add two absorbing boundaries located at x̃ = ±L̃/2. Due to these
boundary conditions, we have only discrete values of k̃. Let us denote them by k̃L̃,m for even
functions and by κ̃L̃,m – for odd functions. The values of k̃L̃,m and κ̃L̃,m, obtained from the
boundary conditions, are positive solutions of the transcendent equations

k̃L̃,m = tanh(L̃/2) tan(k̃L̃,mL̃/2), (4.19)

κ̃L̃,m tan(κ̃L̃,m) = − tanh(L̃/2), (4.20)

where m = 1, 2, 3, . . . denotes m-th smallest positive solution. The equations for normalized eigen-
functions now read as

ψe
k̃L̃,m

(x̃) = N−1/2e (k̃L̃,m, L̃) ·

[
cos(k̃L̃,mx̃)− 1

k̃L̃,m
tanh(x̃) sin(k̃L̃,mx̃)

]
, (4.21)

ψ0
κ̃L̃,m

(x̃) = N−1/2o (κ̃L̃,m, L̃) ·

[
sin(κ̃L̃,mx̃) +

1

κ̃L̃,m
tanh(x̃) cos(κ̃L̃,mx̃)

]
, (4.22)

where normalization constants for odd and even eigenfunctions are

Ne(k̃, L̃) =

(
k̃2 + 1

)(
k̃L̃− sin(k̃L̃)

)
2k̃3

, (4.23)

No(k̃, L̃) =

(
k̃2 + 1

)(
k̃L̃+ sin(k̃L̃)

)
2k̃3

. (4.24)

In the limit case L̃→∞, Eqs. (4.19)–(4.20) for the allowed k̃ values, as well as Eqs. (4.23)–(4.24)
for the normalization constants simplify to

k̃L̃→∞,m =
2mπ

L̃
, ∆k̃L̃→∞ =

2π

L
, (4.25)

κ̃L̃→∞,m =
(2m− 1)π

L̃
, ∆κ̃L̃→∞ =

2π

L
, (4.26)

Ne(k̃, L̃→∞) = No(k̃, L̃→∞) =
L

2

k̃2 + 1

k̃2
, (4.27)

and we have also

ge(k̃) = ∆k̃L̃→∞ · Ne(k̃, L̃→∞) = π
k̃2 + 1

k̃2
, (4.28)

go(κ̃) = ∆κ̃L̃→∞ · No(κ̃, L̃→∞) = π
κ̃2 + 1

κ̃2
. (4.29)
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Inserting these relations and also λcon = l̃2α2D/2 (following from λ̃con = 2λcon
Dα2 − l̃2 = 0) into (2.32),

we finally obtain the time–dependent solution of the Fokker–Planck equation

p(x, t) =
1

2 cosh2(αx)

+
cosh(αx0)

π cosh(αx)
e−

Dα2t
2

∞∫
0

dk̃ e−
Dα2k̃2t

2
k̃2

k̃2 + 1
ψ̄e
k̃

(αx) ψ̄e
k̃

(αx0)

+
cosh(αx0)

π cosh(αx)
e−

Dα2t
2

∞∫
0

dk̃ e−
Dα2k̃2t

2
k̃2

k̃2 + 1
ψ̄o
k̃

(αx) ψ̄o
k̃

(αx0) .

(4.30)

If the initial condition is given by x0 = 0, then ψo
k̃

(0) = 0 and ψe
k̃

(0) = 1 hold, which allows us to
obtain a simpler expression

p(x, t) =
1

2 cosh2(αx)
+

1

π cosh(αx)
e−

Dα2t
2

×
∞∫
0

dk̃ e−
Dα2k̃2t

2
k̃2

k̃2 + 1

[
cos(k̃αx)− 1

k̃
tanh(αx) sin(k̃αx)

]
.

(4.31)

The solution for parameters b = 2, D = 2 and α = 1, corresponding to l̃ = 1, with the initial
location of the delta–peak at x0 = 5 is shown in Fig. 4 for different time moments t. As we
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Figure 4. The probability distribution at different time moments t, calculated for the parameters
b = 2, D = 2 and α = 1 (l̃ = 1) starting at x0 = 5.

can see, the probability distribution moves to the left. It broadens at the beginning. For larger
times, it becomes narrower again and converges to the stationary solution pst(x) = lim

t→∞
p(x, t) =

1
cosh2(αx)

= ψ0(x)
2 (see Eqs. (4.30) and (4.16)), which is a symmetric distribution around x = 0.

The stationary solution is practically reached at t = 10. This behavior is expected from the drift–
diffusion dynamics.

For small times t → 0, we have a delta-peak located at x = x0 in accordance with the given
initial condition (2.3). For comparison, the “general solution” of [10] does not satisfy this initial
condition, as a result of a wrong construction, where the contribution of bounded states is simply
summed up with a Gaussian probability density profile (calculated with an error). The latter cor-
responds to unbounded states for zero Schrödinger potential at L→∞, as it is evident from (3.13)
and (3.3) at vdrift = 0. Therefore also the result appears to be correct only at t → ∞ when
the Gaussian part vanishes. It is clear that the whole set of eigenfunctions must be calculated
self-consistently for the given potential to obtain a correct and meaningful result, since only in
this case the completeness relation (2.20) holds and all different eigenfunctions are orthogonal.
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Thus, the basic error of [10] is that some of the eigenfunctions are calculated for zero Schrödinger
potential in [10], whereas all of them must be calculated for the true Schrödinger potential.

4.4. The solution of FPE for Pöschl–Teller potential with parameter l̃ = 2

For l̃ = 2 (which implies b = 2αD) we have two bounded states with eigenvalues λ̃0 = −4 and
λ̃1 = −1. The corresponding eigenfunctions are

ψ0(x̃) =

√
3

2 cosh(x̃)2
, (4.32)

ψ1(x̃) =

√
3

2

sinh(x̃)

cosh(x̃)2
. (4.33)

The unbounded eigenfunctions are

ψ̄e
k̃

(x̃) =
(

1 + k̃2 − 3 tanh(x̃)2
)

cos(k̃x̃)− 3k̃ tanh(x̃) sin(k̃x̃) , (4.34)

ψ̄o
k̃

(x̃) =
(

1 + k̃2 − 3 tanh(x̃)2
)

sin(k̃x̃) + 3k̃ tanh(x̃) cos(k̃x̃) . (4.35)

By adding again two absorbing boundaries at x̃ = ±L̃/2, we have discrete values of k̃, i. e.,
k̃L̃,m for even functions and κ̃L̃,m for odd functions. In the limit L̃ → ∞, we obtain again the
classical infinite–square–well relations for eigenstates:

k̃L̃→∞,m =
(2m− 1)π

L̃
, (4.36)

κ̃L̃→∞,m =
2mπ

L̃
. (4.37)

The normalization constants in this case are

Ne(k̃, L̃→∞) = No(k̃, L̃→∞) =
L

2
(k̃2 + 4)(k̃2 + 1) . (4.38)

By applying the same steps as in the case of l̃ = 1, we obtain the solution

p(x, t) =
3

4 cosh4(αx)
+

3

2

sinh(αx) sinh(αx0)

cosh4(αx)
e−

3
2Dα

2t

+
cosh2(αx0)

π cosh2(αx)
e−2Dα

2t

∞∫
0

dk̃ e−
Dα2k̃2t

2
1

k̃2 + 5k̃2 + 4
ψe
k̃

(αx)ψe
k̃

(αx0)

+
cosh2(αx0)

π cosh2(αx)
e−2Dα

2t

∞∫
0

dk̃ e−
Dα2k̃2t

2
1

k̃2 + 5k̃2 + 4
ψo
k̃

(αx)ψo
k̃

(αx0) .

(4.39)

The solution for parameters b = 4, D = 2 and α = 1, corresponding to l̃ = 2, with the initial
condition given by x0 = 5 is shown in Fig. 5 for different time moments t. The evolution of the
probability distribution is very similar to that one shown in Fig. 4 for l̃ = 1, with the only essential
difference that the dynamics is faster and the distribution is somewhat narrower because of a
deeper potential well.

5. Conclusions

Using the analogy of the Fokker–Planck equation with the Schrödinger equation, it has been
shown how the time–dependent solution can be constructed in the case of mixed eigenvalue spec-
trum with free and bounded states. The method is based on the idea of introducing two absorbing
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Figure 5. The probability distribution at different time moments t, calculated for the parameters
b = 2, D = 4 and α = 1 (l̃ = 2) starting at x0 = 5.

boundaries at x = ±L/2, considering the limit L → ∞ afterwards. Although this idea is similar
to the one proposed earlier in [10], it is obvious that the problem is quite non-trivial, so that the
oversimplified (erroneous) approach of [10] cannot be used – see discussion at the end of Sec. 4.3.
Analytical solutions have been found and analyzed in two examples when the Schrödinger potential
is constant (constant force) and a shifted Pöschl–Teller potential. For the latter potential, the ana-
lytical solutions have been compared with the results of the Crank–Nicolson numerical integration
method, and the agreement within an error of 10−7 has been found. The time evolution of the
calculated probability distribution in these examples is consistent with the usual drift–diffusion
dynamics.
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