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Summary. We have studied the optimal velocity model [1, 2] for highway traffic.
On a microscopic level, traffic flow is described by Bando’s optimal velocity model
in terms of accelerating and decelerating forces. We define an intrinsic energy of the
model. We find a latent heat when the system undergoes a phase transition from
single phase traffic (free flow) to a phase that contains two different, a dense and a
dilute phase (congested or stop–and–go flow). Here we report on properties of the
latent heat.
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1 Introduction.

We have studied a model for single lane highway traffic, the so called Bando
Optimal Velocity Model (OVM) [1, 2]. In the model a vehicle wants always
to drive with its optimal velocity with respect to the distance to the vehicle
ahead, the so called headway distance. In the model no overtaking is allowed.
The model consists of a set of coupled differential equations one for each
vehicle. We integrate out the equations of motion of the OVM by a Runge
Kutta 4th order numerical method.

The phase diagram of the OVM consists of two phases. One is a high
density phase where vehicles have a low velocity (congestion) and the other
phase is a low density phase where vehicles run at nearly maximum velocity
(free flow). A system can end up in one of these two phases in the entire system
or it can end up in a mixed phase state. In the mixed phase state there will
be two phase boundaries. The phase boundaries are either at the head of the
queue where vehicles leave the congested phase or at the tail where vehicles
break and enter the queue (congested phase). If there are too few vehicles in
the system a high density phase will not form and all vehicles will be in the
low density phase. The OVM undergoes a dynamic phase transition.
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Within the framework of the OVM an energy E of the model can be defined
[3] and from the energy we can calculate a latent heat Egap for the system of
cars going from a phase of low density to one with a high density.

2 The Bando Optimal Velocity Model

The Bando OVM is a deterministic model for traffic flow. It consists of a one-
dimensional circular road (single lane) with periodic boundary conditions, see
Fig. 1.

∆x

Fig. 1. Vehicles marked by filled circles driving on a closed loop. The arrows indicate
the direction and magnitude of the velocity. ∆x is the headway distance.

The set of differential equations making up the Bando OVM dynamics are:

dimension dimensionless

d

dt
vi =

1

τ
(vopt(∆xi)− vi)

d

dt
ui = (uopt(∆yi)− yi) (1a)

d

dt
xi = vi

d

dt
yi =

1

b
ui (1b)

vopt (∆x) = vmax
(∆x)2

D2 + (∆x)2
uopt (∆y) =

(∆y)2

1 + (∆y)2
(1c)

b =
D

vmaxτ
(1d)

The set of three equations to the right are the dimensionless version of the
equations to the left. The velocity of the car i is vi and its position is xi. The
optimal velocity function is vopt(∆x). The distance to the vehicle in front,
the headway distance, is denoted by ∆xi = xi+1 − xi (bumper-to-bumper
distance) and c = N/L is the homogeneous density, where N is the number
vehicles and L is the length of the road. Control parameters are maximal
velocity of a vehicle vmax, an interaction distance D and a characteristic time
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τ . These three control parameters can be combined to a single parameter b in
the dimensionless version.

Following [3] the acceleration of a vehicle cars can be split into two con-
tributions

m
d

dt
vi = Facc(vi) + Fdec(∆xi)

where

Facc(vi) =
m

τ
(vmax − vi) ≥ 0 (2a)

Fdec(∆xi) =
m

τ
(vopt(∆xi)− vmax) ∈ [−vmaxm/τ, 0] ≤ 0 (2b)

Adding together equations (2a) and (2b) recovers equation (1a) from above

d

dt
vi =

1

τ
(vopt(∆xi)− vi) .

The decelerating force equation (2b) can be written as (using equation (1c))

Fdec(∆xi) = vmax
m

τ

(
(∆x)2

D2 + (∆x)2
− 1

)
< 0 . (3)

The decelerating force will always be less then zero but approach zero at
infinite head away distance ∆x and starting at −vmaxm/τ at zero distance.

A potential energy V for the system of N vehicles can be defined as V =∑N
i=1 φ(∆xi) where φ(∆xi) is the interaction potential of the i-th car with the

car (i+ 1) ahead, which is given by (Note Fdec(∆xi) 6= −∂V/∂xi is violation
Newton 3’d law)

Fdec(∆xi) = −∂φ(xi+1 − xi)
∂xi

=
dφ(∆xi)

d∆xi
. (4)

Integrating this equation gives

φ(∆x) = vmax
Dm

τ

[
π

2
− arctan

(
∆x

D

)]
(5)

where the integrating constant is chosen such that φ(∞) = 0
The time derivative of the potential V becomes

dV

dt
=

N∑
i=1

(vi+1 − vi)Fdec(∆xi) . (6)

The time derivative for the kinetic energy T =
∑N
i=1

mv2i
2 is

d

dt

mv2i
2

= vim
d

dt
vi = vi (Facc(vi) + Fdec(∆xi)) . (7)
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The time derivative of the total energy E = T + V and the energy flux Φ
obey the following balance equation

dE

dt
+ Φ = 0 (8)

where

Φ = −
N∑
i=1

[viFacc(vi) + vi+1Fdec(∆xi)] (9)

is the energy flux. It includes both input (from engine) and output (friction) of
energy. Energy is not conserved but the driven system will reach a stationary
state as time goes on.

3 Bando OVM Numerical Results

The system is started in a configuration close to the homogeneous state and
as time goes on in the simulation the system ends up in one of two possible
stationary states.

It can end up in a homogeneous flow with all vehicles traveling at the
same headway distance. This solution is the fixed point ∆xi = ∆xhom, vi =
vopt (∆xhom) and all vehicles travel with the same velocity. This would give
the dashed line in Fig. 2.

The other possibility is that the system reaches the limit cycle. In this
solution there is one congested part and one free flow part in the system.
Vehicles leave at a steady rate the head of the queue to enter the free flow
regime and after a while they will reach the tail of the queue and enter the
slowly moving regime. This would give the full line in Fig. 2. Note that there
is only one queue in the stationary limit cycle. If there are more queues the
system is still evolving and is not stationary. In the leftmost figure in Fig.
(3) the reduction of the number of queues can clearly be seen as steps in the
energy E as time increases.

Integrating out the equations (Bando OVM equation (1a-1d)) the energy
of the system can be calculated. As the system evolves from its initial config-
uration the number of queues will be reduced till the system reaches the limit
solution (t→∞). After that the energy E of the system will remain constant.
In the leftmost Fig. 3 the evolution of the energy to a constant value can be
seen clearly.

For each particular combination of control parameters N , L and b = D
vmaxτ

a calculation is made. In the rightmost Fig. 3 one such result is shown com-
bining several runs. In this Figure there are two curves shown. Where the
curves are on top of each other the system is in a homogeneous limit state.
Where the two curves are separated the system is in the limit cycle. The dif-
ference in energy between the two joining positions of the curves is the energy
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Fig. 2. Solution for ρ = 0.0303m−1 solid circle. Solution for ρ = 0.0606m−1 open
circle, but this splits into a limit cycle.
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Fig. 3. In the left Figure the solid line (larger density ρ = 0.0606m−1) reaches the
limit cycle over a series of smaller queues till finally only one queue is present. The
dashed line small density ρ = 0.0303m−1 reaches the fixed point a homogeneous
system. In the right Figure the Energy as a function of the density of cars. The two
joining points of the curves define the latent heat to go from the dense queued state
to the free flow.

as the system evolves from a dense homogeneous system to a dilute homo-
geneous system via a two phase regime. This energy difference represents a
latent heat, here denoted by Egap.

In the leftmost Fig. 4 the latent heat Egap is presented as a function of
the control parameter b in equation (1d). The shape of the curve suggests an
analysis according to a simple power law:

Egap = A(bc − b)α. (10)

where A is a constant and bc is the value for b that gives a zero latent heat.
In the rightmost Fig. 4 the result according to equation (10) is shown. As is
apparent from the Figure the power law seems to be fulfilled quit well. The
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Fig. 4. In the left Figure the latent energy is shown as a function of the control
parameter b. In the right Figure the same data as in the left Figure is analyzed
according to the scaling relation

value arrived for α = 0.4994. The value used for bc = 1.29745. The scaling is
rather sensitive to small changes to bc as the data will not join a straight line
for small bc − b.

4 Conclusions

We have shown how ideas from thermodynamics can be applied to such a
many–particle system as traffic flow, based on a microscopic (car–following)
description, in analogy to equilibrium physical systems like super saturated
vapor forming liquid droplets.

We have calculated the latent heat of the model as the system changes
from a low density phase to the a high density phase. We found the there is
a scaling behavior in the latent heat for small bc − b. Results found for the
scaling exponent are α = 0.50 and bc = 1.297.
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