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Abstract The air traffic is a very important part of the global transportation net-
work. In distinction from vehicular traffic, the boarding of an airplane is a significant
part of the whole transportation process. Here we study an airplane boarding model,
introduced in 2012 by Frette and Hemmer, with the aim to determine precisely the
asymptotic power–law scaling behavior of the mean boarding time 〈tb〉 and other
related quantities for large number of passengers N. Our analysis is based on an ex-
act enumeration for small system sizes N ≤ 14 and Monte Carlo simulation data for
very large system sizes up to N = 216 = 65536. It shows that the asymptotic power–
law scaling 〈tb〉∝ Nα holds with the exponent α = 1/2 (α = 0.5001±0.0001). We
have estimated also other exponents: ν = 1/2 for the mean number of passengers
taking seats simultaneously in one time step, β = 1 for the second moment of 〈tb〉
and γ ≈ 1/3 for its variance. We have found also the correction–to–scaling exponent
θ ≈ 1/3 and have verified that a scaling relation γ = 1−2θ , following from some
analytical arguments, holds with a high numerical accuracy.

1 Introduction

Recently, following the paper of Frette and Hemmer [1] there has been a spurt of
activity regarding airplane boarding, resulting in five papers in Phys. Rev. E [1–5] in
roughly 16 months. In the model considered by Frette and Hemmer [1], N passen-
gers have reserved seats, but enter the airplane in arbitrary order (N! possibilities).
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A simplified situation is considered with a single isle of rows and only one seat in
each row. It is assumed that a passenger occupies a place equal to the distance be-
tween rows. In addition, he or she requires one time step to place carry-on luggage
and get seated, the time for walking along the isle being neglected. However, a pas-
senger must wait for a possibility to move forwards to his or her seat if the motion is
blocked by other passengers staying or taking seats in front of him or her (see [1] for
more details and examples). The number of seats is equal to the number of passen-
gers in this model. In [4], the same process has been considered with more than one
seat per row. It has been also discussed there what happens if only some fraction p of
the passengers occupy the seats. In a series of works [1,2,4], a non-random ordering
of passengers has been also considered. One of the basic quantities of interest is the
boarding time tb of an airplane. All these papers deal with a numerical estimation of
the mean boarding time 〈tb〉, stating that it is more ore less well consistent with the
power law 〈tb〉 = cNα . Estimates α = 0.69± 0.01 and c = 0.95± 0.02 have been
obtained in [1] from the data with a small number of passengers, 2 < N < 16.

Later on, it has risen an interesting discussion [2–4] about the value of the expo-
nent α , describing the asymptotic power law at N → ∞. It has been found that the
numerical estimates converge to a remarkably different from 0.69 value α = 1/2 for
large N. In particular, α = 0.5001± 0.0001 has been found in [3] from the Monte
Carlo simulation data up to N = 216. In fact, α = 1/2 is exactly the analytical value
reported earlier in [6]. As explained in [4], the ∝ N1/2 asymptotic behavior fol-
lows from the mathematical theorem reported already in [7, 8]. In [6], the propor-
tionality coefficient c = 4− 2ln2 has been also found. Corrections to scaling have
been considered in [3], as well as in [6]. Numerical estimation in [3] suggests that
correction–to–scaling exponent θ in 〈tb〉 = cNα

(
1+O

(
N−θ

))
is approximately

1/3. It has been also numerically found there that the variance of tb scales with a
similar exponent γ ≈ 1/3. In [6] it has been argued that α − θ is larger than 1/6,
i. e., θ < 1/3. The question about the precise values of θ and γ is interesting and
merits further investigation.

2 Exact results for boarding with small number of passengers

Here we consider in some detail the simple model introduced by Frette and Hem-
mer [1]. For a small number of passengers N, it is possible to consider all N! per-
mutations and count exactly the number of realizations m(N, tb), corresponding to
certain boarding time tb, where 1≤ tb ≤ N, by an appropriate numerical algorithm.
The probability to have the boarding time tb then is P(N, tb) = m(N, tb)/N!.

The results P(N, tb) for N ≤ 4 are collected in Tab. 1 (left). The number of se-
quences of passengers with increasing seat numbers s is also interesting, since these
passengers always get seated simultaneously. This point has been discussed in [1],
reporting some exact results. In this case the seats are numbered from left to right,
passengers enter the airplane from the left hand side, and we are looking for se-
quences of passengers also from left to right. A sequence of passengers is repre-
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Table 1 The number of realizations m(N, tb) for boarding of N passengers in tb time steps (left
table), and the number of realizations m(N,s) with s sequences of increasing seat numbers (right
table). P(N, tb) = m(N, tb)/N! in the left table is the probability that the boarding time is just tb,
and P(N,s) = m(N,s)/N! in the right table is the probability that there are just s sequences.

N tb m(N, tb) P(N, tb)
1 1 1 1
2 1 1 0.5

2 1 0.5
3 1 1 0.25

2 4 0.75
3 1 0.25

4 1 1 1/24 ≈ 0.04167
2 12 0.5
3 10 5/12 ≈ 0.41667
4 1 1/24 ≈ 0.04167

N s m(N,s) P(N,s)
1 1 1 1
2 1 1 0.5

2 1 0.5
3 1 1 0.25

2 4 0.75
3 1 0.25

4 1 1 1/24 ≈ 0.04167
2 11 11/24 ≈ 0.45833
3 11 11/24 ≈ 0.45833
4 1 1/24 ≈ 0.04167

sented by the corresponding sequence of seat numbers. For example, the sequence
1234 represents a queue of N = 4 passengers, where the last passenger staying in
the queue has the seat number 1, the passenger staying in front of him or her has the
seat number 2, and so on. In this case there is only one sequence of increasing seat
numbers (s = 1) when looking from left to right, which means that all passengers
get seated simultaneously in one time step, i. e., the boarding time is tb = 1. A naive
guess would be that tb = s. The number of realizations m(N,s), corresponding to
certain s, as well as the probability P(N,s) to have just s sequences of passengers
with increasing seat numbers, can be easily calculated for a small N.

The results P(N,s) for N ≤ 4 passengers are collected in Tab. 1 (right). The
probability distribution P(N,s) is always symmetric, as it follows from the exact
results of [1]. It is seen also in Tab. 1. On the other hand, it is evident from this
table that already at N = 4 the probability distribution P(N, tb) is asymmetric, which
means that tb 6= s. This effect appears because of merging of the sequences with
increasing seat numbers. For N = 4 such a merging occurs only for one of 4! = 24
possible permutations, i. e., for the arrangement 2143 with s = 3. In this case, the
passenger with seat number 1 gets seated simultaneously with the passenger with
seat number 3, although these two passengers belong to two different sequences
with increasing seat numbers. As a result, two sequences merge after the first step,
and the remaining two passengers get seated simultaneously in the second step. It
means that tb = 2 < s holds in this case.

Such cases of merging makes the problem non-trivial and does not allow us to
obtain an exact solution for arbitrary N analytically. The number of merging increase
very significantly for larger N. The exactly enumerated values of m(N, tb) and the
corresponding values of P(N, tb) are collected in Tab. 2 for 5 ≤ N ≤ 13. In Tab. 3,
the results for N = 14 are shown, including also those for m(N = 14,s) and P(N =
14,s). The probability distributions P(N = 14, tb) and P(N = 14,s) are depicted in
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Table 2 The number of realizations m(N, tb) for boarding of N passengers in tb time steps.
P(N, tb) = m(N, tb)/N! is the probability that the boarding time is just tb.

tb m(N, tb) P(N = 5, tb)
1 1 0.00833
2 33 0.275
3 66 0.55
4 19 0.15833
5 1 0.00833

tb m(N, tb) P(N = 6, tb)
1 1 0.00139
2 88 0.12222
3 372 0.51667
4 227 0.31528
5 31 0.04306
6 1 0.00139

tb m(N, tb) P(N = 7, tb)
1 1 0.00020
2 232 0.04603
3 1956 0.38810
4 2218 0.44008
5 586 0.11627
6 46 0.00913
7 1 0.00020

tb m(N, tb) P(N = 8, tb)
1 1 0.00002
2 609 0.01510
3 9973 0.24735
4 19587 0.48579
5 8824 0.21885
6 1261 0.03127
7 64 0.00159
8 1 0.00002

tb m(N, tb) P(N = 9, tb)
1 1 2.7557×10−6

2 1596 0.00440
3 50236 0.13844
4 163969 0.45185
5 117589 0.32404
6 27006 0.07442
7 2397 0.00661
8 85 0.00023
9 1 2.7557×10−6

tb m(N, tb) P(N = 10, tb)
1 1 2.7557×10−7

2 4180 0.00115
3 252299 0.06953
4 1335180 0.36794
5 1460396 0.40245
6 503411 0.13873
7 69057 0.01903
8 4166 0.00115
9 109 0.00003
10 1 2.7557×10−7

tb m(N, tb) P(N = 11, tb)
1 1 2.5052×10−8

2 10945 0.00027
3 1268890 0.03179
4 10731205 0.26884
5 17405710 0.43605
6 8630106 0.21620
7 1707964 0.04279
8 155075 0.00388
9 6767 0.00017
10 136 3.4071×10−6

11 1 2.5052×10−8

tb m(N, tb) P(N = 12, tb)
1 1 2.0877×10−9

2 28656 0.00006
3 6402738 0.01337
4 85860395 0.17925
5 202624251 0.42301
6 140460107 0.29324
7 38400800 0.08017
8 4898366 0.01023
9 315693 0.00066
10 10426 0.00002
11 166 3.4655×10−7

12 1 2.0877×10−9

tb m(N, tb) P(N = 13, tb)
1 1 1.6059×10−10

2 75024 0.00001
3 32435686 0.00521
4 687285783 0.11037
5 2329632160 0.37412
6 2213481380 0.35546
7 811899122 0.13038
8 139225896 0.02236
9 12374938 0.00199
10 595214 0.00010
11 15396 2.4725×10−6

12 199 3.1957×10−8

13 1 1.6059×10−10

Fig. 1, showing also the mean value and the standard deviation for the boarding time
distribution.

3 Mapping to the two-dimensional problem of the longest
increasing sequence

A passenger sequence can be rendered as a two-dimensional scatter plot. Each pas-
senger is represented by a point with coordinates x = i/N and y = j/N, where i is
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Table 3 The number of realizations m(N = 14, tb) for boarding of N = 14 passengers in tb time
steps (left table), and the number of realizations m(N = 14,s) with s sequences of increasing seat
numbers (right table). P(N = 14, tb) = m(N = 14, tb)/N! in the left table is the probability that the
boarding time is just tb, and P(N = 14,s) = m(N = 14,s)/N! in the right table is the probability
that there are just s sequences for N = 14.

tb m(N = 14, tb) P(N = 14, tb)
1 1 1.1471×10−11

2 196417 2.2530×10−6

3 164973584 0.00189
4 5519763360 0.06332
5 26642715539 0.30561
6 34207960967 0.39239
7 16491836851 0.18917
8 3688831863 0.04231
9 432622448 0.00496
10 28312826 0.00032
11 1055151 0.00001
12 21957 2.5186×10−7

13 235 2.6956×10−9

14 1 1.1471×10−11

s m(N = 14,s) P(N = 14,s)
1 1 1.1471×10−11

2 16369 1.8776×10−7

3 4537314 0.00005
4 198410786 0.00228
5 2571742175 0.02950
6 12843262863 0.14732
7 27971176092 0.32085
8 27971176092 0.32085
9 12843262863 0.14732
10 2571742175 0.02950
11 198410786 0.00228
12 4537314 0.00005
13 16369 1.8776×10−7

14 1 1.1471×10−11
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Fig. 1 The probability distributions P(N, tb) and P(N,s) for N = 14 passengers. The mean board-
ing time 〈tb〉 = 5.85212 is shown by a vertical solid line, the range ±σ of one standard deviation
σ = 0.98116 from the mean value is indicated by vertical dashed lines.

his/her sequential index in the queue and j is his/her seat number. Note that in this
case the passenger, who enters the airplane first has the index i = 1, the passenger
behind him or her has the index i = 2, and so on. In the asymptotic limit N→ ∞, an
averaged over ensemble of sequences density of points (i/N, j/N), normalized by
N, gives the probability density function p(x,y).

According to the mathematical theorem in [7,8], the length of the longest increas-
ing subsequence asymptotically scales as N1/2, provided that p(x,y) is finite. A sub-
sequence

{
(xi1 ,y j1),(xi2 ,y j2), . . . ,(xil ,y jl )

}
of pairs of real numbers with 0≤ xi ≤ 1
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and 0≤ yi ≤ 1 for i = 1,2, . . . ,N is called an increasing subsequence, if xim < xim+1
and yim < yim+1 holds for m = 1,2, . . . , l−1, where im is a sequence of non-repeated
indices between 1 and N. In the considered here model, the distribution of points in
the xy plane is fully random, so that p(x,y)≡ 1 is indeed finite.

The papers [4–6] deal with claim that the length l of the longest increasing se-
quence is equal to the boarding time tb. We have check it for N = 4, considering
the two-dimensional scatter plots for all 4! = 24 permutations in Fig. 2. In each of
the cases, the longest increasing sequence is shown by connecting the points of this
sequence by lines. The number of points in this graph is equal to l. In one of the
cases no lines are present, implying that l = 1. In the cases, where there are sev-
eral sequences with the same maximal length, different lines are used to distinguish
them. In 23 of 24 cases we can see that tb is indeed equal to the length l of the
longest increasing sequence. However, there is one exception, corresponding to the
sequence 3142 in the notations of Sec. 2. In this case, the seat numbers are j1 = 2,
j2 = 4, j3 = 1 and j4 = 3 for passengers numbered sequentially from right to left,
as considered in this section. The corresponding scatter plot is the second one in the
third row in Fig. 2. Evidently, the boarding time in this case is tb = 3, but l = 2.

Fig. 2 Scatter plots with horizontal and vertical axes representing the sequential number and the
seat number for each of N = 4 passengers, plotted by solid circles. The connecting lines are used
to show the longest increasing sequences.

This exception shows that the mapping of the original problem to the problem
of finding the longest increasing sequence is not exact. Nevertheless, it is possible
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that the asymptotic scaling of 〈l〉 and 〈tb〉 is described by the same exponent α ,
e. g., if tb/l is finite (and nonzero at N → ∞) in a fraction of cases which tends to
unity at N→∞. According to the above mentioned theorem of [7,8], 〈l〉 scales with
the exponent α = 1/2 at N → ∞. It is also very plausible that 〈tb〉 scales with the
same exponent owing to the mentioned here reason, since α = 1/2 is accurately
confirmed by Monte Carlo simulations [3].

The ensemble of realizations, illustrated in Fig. 2, is unchanged if each of the
plots is mirror-reflected with respect to the diagonal y = x. The same is true for
the mirror–reflection with respect to the other diagonal y = 1− x. Thus, the mirror–
symmetric with respect to each other plots appear with equal probability. This is
an evident symmetry property for any passenger number N in the considered here
mapping, where the number of seats is equal to the number of passengers N and all
N! permutations are equally probable. Therefore, if in the asymptotic limit N→ ∞

the plot of the longest increasing sequence follows certain curve y = f (x), then
there exist also mirror–symmetric curves with respect to both diagonals, represent-
ing equivalent plots of increasing sequences of the same (i. e., maximal) length.
Hence, the curve y = f (x) is unique only if it follows the diagonal y = x (it cannot
follow the other diagonal y = 1− x, since it must be increasing).

Because it turns out that the often used [4–6] and tested here mapping to the
problem of finding the longest increasing sequence is inexact, and we also cannot
see how the analytical solutions of [5, 6] reflect the outlined here symmetry of such
a mapping in the simplest case, we mainly rely on our simulation results.

4 Asymptotic scaling results for airplane boarding with large
number of passengers

According to [3], the mean boarding time 〈tb〉 and its second moment 〈t2
b 〉 for large

N values about 216 are very accurately described by asymptotic formulas

〈tb〉 = Atα

(
1+a1N−θ +a2N−2θ +o

(
N−2θ

))
(1)

〈t2
b 〉 = Btβ

(
1+b1N−θ +b2N−2θ +o

(
N−2θ

))
(2)

with the exponents β = 2α = 1 and θ ≈ 1/3. Since the boarding time distribution
is asymptotically sharp at N→∞, the relation B = A2 holds for the coefficients. The
exponent α = 1/2 agrees with the results of [2, 4–6]. The coefficient A has been
estimated in [3] (see Fig. 1 there) to be A = 2.6092± 0.0002, which is similar to
A = 4−2ln2 ≈ 2.6137 of [6]. We consider also the variance of the boarding time,
which scales as

var(tb) = 〈t2
b 〉−〈tb〉2 ∝ Nγ (3)

at large N. According to (1) and (2), where B = A2 and β = 2α = 1, we have γ =
1−θ if b1−2a1 6= 0, and γ = 1−2θ if b1−2a1 = 0 and b2−2a2−a2

1 6= 0 hold. Our
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numerical estimation supports the second possibility, as we find that the relation

γ = 1−2θ (4)

is satisfied within the small error bars of the estimates θ = 0.330±0.001 (see Fig. 2
in [3]) and γ = 0.343±0.001 given in [3]. The agreement of these values with 1/3,
however, is not perfect, and we allow a possibility that θ < 1/3 and γ > 1/3 hold.

5 Discussions and application

The growing need for mobility through the world shows no sign of slowing down.
Applications of stochastic processes to transport problems in a large variety of com-
plex systems, including vehicular and pedestrian traffic, are well known [9, 10].
Here we focus on the air traffic and boarding of an airplane as a significant part of
the global transportation process. Our Monte Carlo simulation and analysis is one
of numerous applications of stochastic methods to study the behavior of complex
systems. From the theoretical point of view, it is tightly related to the power–law
scaling and universality problems in many–particle systems. From a practical point
of view, it could help to understand the boarding process in order to optimize it.
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