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Abstract We consider the motion of a point-like car on a one-dimensional hilly road
under the influence of gravitation and friction. Based on a Newtonian description we
investigate the equations of motion of a particle to discuss the speed and position of
a car of mass m on a undulating path f (x).

1 Introduction

In the last few decades, many mathematical models for traffic flow have been pro-
posed, in particular Follow-the-Leader models. In these models usually the roads are
considered to be horizontally flat. But vertically undulated roads, also called sags,
are bottlenecks in freeway networks. As pointed out at TRAFFIC AND GRANULAR
FLOW ’15 that this type of a hilly freeway causes different acceleration behavior of
drivers compared with the absence of sags. Traffic flow optimization is important to
determine how vehicles should behave at sags in order to minimize total delay [1].
In this contribution we consider the problem of driving at sags from the mathemat-
ical point of view based on Newtonian equations of motion. The general solution
seems to be well known, but the authors found nothing or references with wrong or
incomplete results.
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2 The Model

As a starting point, we consider two orthonormal coordinate systems, i. e., {x,y}
(Cartesian coordinates) and {qT ,qN} (tangent-normal coordinates), which are ro-
tated by an angle α with respect to each other – see Fig. 1. The surface y = f (x), on
which the motion takes place, represents a constraint. Therefore the actual coordi-
nates x and y, respectively, qT and qN are not mutually independent.

Fig. 1 The vehicular particle follows the curved path y = f (x) shown as full red line.

3 Equations of Motion

The motion of a particle of mass m along a one dimensional path of elevation y =
f (x) taking both gravitational and frictional forces into account is given by

mv̇T = FT + γ FN vT , (1)
q̇T = vT , (2)

where qT ,qN are the tangential and normal coordinates to the path defined by f (x),
vT and v̇T = dvT/dt are the velocity and acceleration in the direction of motion. The
gravitational force F = −mg is split into a part that acts in the direction of motion
FT = F sinα = −mgsinα and a part that is normal to the path FN = F cosα =
−mgcosα . The Cartesian coordinates x,y and the angle α are defined in the figure
above. The coefficient of friction is given as parameter γ ≥ 0.
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In Cartesian coordinates the equations of motion (1,2) are

mv̇x = −mg
f ′(x)

1+ f ′2(x)
−m

f ′(x) f ′′(x)
1+ f ′2(x)

v2
x−mgγ

1√
1+ f ′2(x)

vx , (3)

ẋ = vx , (4)

where the first derivative of f is f ′(x) = d f (x)/dx and f ′′(x) is the second derivative
and f ′2(x) is the square of f ′(x). The first and second derivatives with respect to time
are denoted by ẋ = dx/dt and ẍ = d2x/dt2.

The equations (3,4) can be written together as

mẍ =−mg
f ′(x)

1+ f ′2(x)
−m

f ′(x) f ′′(x)
1+ f ′2(x)

ẋ2−mgγ
1√

1+ f ′2(x)
ẋ . (5)

A comparison with the results, reported by S. Geisendorf – see Fig. 2, shows
the agreement of only the first terms on the right hand side (although the y-axis is
directed down).

Fig. 2 From the talk given by Professor Sylvie Geisendorf during the meeting Physik trifft Volks-
wirschaftslehre at the University of Oldenburg, 21.03.2014.

For a motion without friction on a surface without curvature (straight line), only
the first term is relevant. The second term appears when the surface is curved, as
in the case of the mathematical pendulum (see below), since the curvature contains
the second derivative of f (x). The third term describes the friction, which is propor-
tional to coefficient γ and velocity ẋ.
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4 Derivation of equations of motion

The slope of the function y = f (x) is f ′(x) = dy/dx = tanα . Hence,
dqT =

√
(dx)2 +(dy)2 = dx

√
1+ f ′2(x) holds due to dx = dqT cosα and dy =

dqT sinα .
The gravity force F = −mg is oriented vertically down (in the direction of neg-

ative y–axis) – see Fig. 1. Its tangential and normal components are FT = F sinα

and FN = F cosα , respectively. These components of the force depending on the
coordinate x are determined by the relations sinα = dy/dqT = f ′(x)/

√
1+ f ′2(x)

and cosα = dx/dqT = 1/
√

1+ f ′2(x), yielding

FT (x) = −mg
f ′(x)√

1+ f ′2(x)
, (6)

FN(x) = −mg
1√

1+ f ′2(x)
. (7)

The corresponding to this coordinate velocities read {vx = dx/dt,vy = dy/dt},
respectively, {vT = dqT/dt,vN = dqN/dt}. Using the relation dx = dqT cosα , we
obtain

vx = vT
1√

1+ f ′2(x)
. (8)

Now we can calculate the acceleration v̇x = dvx/dt = d2x/dt2 in the x-direction,

v̇x = v̇T
1√

1+ f ′2(x)
− vT√

1+ f ′2(x)

f ′(x) f ′′(x)
1+ f ′2(x)

vx

= v̇T
1√

1+ f ′2(x)
− v2

x
f ′(x) f ′′(x)
1+ f ′2(x)

. (9)

Multiplying this acceleration by the mass m, i. e.,

mv̇x = mv̇T
1√

1+ f ′2(x)
−mv2

x
f ′(x) f ′′(x)
1+ f ′2(x)

, (10)

and replacing mv̇T by the equation of motion (1), we obtain

mv̇x =
FT + γ vT FN√

1+ f ′2(x)
−mv2

x
f ′(x) f ′′(x)
1+ f ′2(x)

. (11)

Taking into account the already calculated components of the force as functions
of coordinate x, i. e., FT (x) and FN(x) in Eqs. (6,7), as well as the relation vT =
vx
√

1+ f ′2(x), we obtain from Eq. (8) the final result

mv̇x =−
mg f ′(x)

1+ f ′2(x)
− γ

mgvx√
1+ f ′2(x)

−mv2
x

f ′(x) f ′′(x)
1+ f ′2(x)

. (12)
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This equation is identical with the equation of motion (3) and therefore also with
the Newton’s equation (5). By this the derivation is completed.

5 Special Situations

We present a solution of eq. (5) in two special cases: motion on an arc of a loop road
and on a street with a double well.

The motion of a mass on an arc y = f (x) =−
√

R2− x2 with radius R is described
by equations

mv̇x = −mg

√
R2− x2

R2 x−m
x

R2− x2 v2
x−mgγ

√
R2− x2

R
vx , (13)

ẋ = vx , (14)

which in polar coordinates x = Rsinϕ reads

ϕ̈ =− g
R

sinϕ−gγ cosϕ ϕ̇ . (15)

In fact, this is the equation of mathematical pendulum with a new interesting friction
term. The solution is illustrated in Fig. 3.

Fig. 3 Trajectories in the phase space of velocity and coordinate as solutions of eqs. (13,14) with
parameters R = 1 m, g = 9.81 m/s2, m = 1 kg for γ = 0 s/m (thick line) and γ = 0.1 s/m (dashed
line). The initial condition x(0) = 0.5 m, vx(0) = 0 m/s is marked by a cross (×).
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As another example, we consider the motion on a double-well surface

f (x) =
a2

2
x2 +

a3

3
x3 +

a4

4
x4 , (16)

see Fig. 4, with minima xmin located at−(
√

21−1)/2≈−1.79 and +(
√

21+1)/2≈
2.79.

Fig. 4 The surface (16) with parameters a2 = −5 m−1, a3 = −1 m−2 and a4 = 1 m−3. Various
initial coordinates are marked by different symbols (asterisk (∗), plus (+) and open cirlce (◦)).

The coordinate x(t) as function on time is shown in Fig. 5.

Fig. 5 Position x(t) (in m) depending on time t (in s) calculated from eqs. (3,4) for the surface (16),
shown in Fig. 4, with the parameters g = 9.81 m/s2, m = 1 kg and initial conditions x(0) = 4 m and
vx(0) = 0 m/s marked with an open circle (◦) in Fig. 4. The four graphs shown are for the friction
coefficients: γ = 0 s/m (thin line), γ = 0.03 s/m (dotted line), γ = 0.06 s/m (lower thick line) and
γ = 0.1 s/m (upper thick line).
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The solutions in the phase space of velocity and coordinate is shown in Fig. 6.

Fig. 6 Trajectories in the phase space of velocity and coordinate as solutions of eqs. (1,2) with
parameters g= 9.81 m/s2, m= 1 kg and γ = 0 s/m for vx(0)= 0 m/s and different initial coordinates
x(0), shown as in Fig. 4. The dashed line shows the trajectory for vT at x(0) = 4 m, other lines –
trajectories for vx at x(0) = 4 m (thick line (◦)), x(0) = 3.5 m (right thin line (+)) and x(0) =
−2.5 m (left thin line (∗)).

6 Concluding remarks

The current study improves the understanding of traffic flow at sags from the mathe-
matical point of view. The deterministic description based on Newtonian mechanics
is limited for two reasons: (i) We investigate an ideal one-particle system and (ii) we
do not include the influence of fluctuations. Randomness is important in a general
framework of stochastic transport in traffic systems [2].
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